Low Overhead Qutrit Magic State Distillation

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-06-12 DOI:10.22331/q-2025-06-12-1768
Shiroman Prakash, Tanay Saha
{"title":"Low Overhead Qutrit Magic State Distillation","authors":"Shiroman Prakash, Tanay Saha","doi":"10.22331/q-2025-06-12-1768","DOIUrl":null,"url":null,"abstract":"We show that using qutrits rather than qubits leads to a substantial reduction in the overhead cost associated with an approach to fault-tolerant quantum computing known as magic state distillation. We construct a family of $[[9m-k, k, 2]]_3$ triorthogonal qutrit error-correcting codes for any positive integers $m$ and $k$ with $k \\leq 3m-2$ that are suitable for magic state distillation. In magic state distillation, the number of ancillae required to produce a magic state with target error rate $\\epsilon$ is $O(\\log^\\gamma \\epsilon^{-1})$, where the yield parameter $\\gamma$ characterizes the overhead cost. For $k=3m-2$, our codes have $\\gamma = \\log_2 (2+\\frac{6}{3 m-2})$, which tends to $1$ as $m \\to \\infty$. Moreover, the $[[20,7,2]]_3$ qutrit code that arises from our construction when $m=3$ already has a yield parameter of $1.51$ which outperforms all known qubit triorthogonal codes of size less than a few hundred qubits.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"14 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-06-12-1768","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We show that using qutrits rather than qubits leads to a substantial reduction in the overhead cost associated with an approach to fault-tolerant quantum computing known as magic state distillation. We construct a family of $[[9m-k, k, 2]]_3$ triorthogonal qutrit error-correcting codes for any positive integers $m$ and $k$ with $k \leq 3m-2$ that are suitable for magic state distillation. In magic state distillation, the number of ancillae required to produce a magic state with target error rate $\epsilon$ is $O(\log^\gamma \epsilon^{-1})$, where the yield parameter $\gamma$ characterizes the overhead cost. For $k=3m-2$, our codes have $\gamma = \log_2 (2+\frac{6}{3 m-2})$, which tends to $1$ as $m \to \infty$. Moreover, the $[[20,7,2]]_3$ qutrit code that arises from our construction when $m=3$ already has a yield parameter of $1.51$ which outperforms all known qubit triorthogonal codes of size less than a few hundred qubits.
低开销Qutrit魔法状态蒸馏
我们表明,使用量子位而不是量子位可以大幅降低与容错量子计算方法(称为神奇状态蒸馏)相关的开销成本。我们建立了一个家庭 $[[9m-k, k, 2]]_3$ 任意正整数的三正交四元纠错码 $m$ 和 $k$ 有 $k \leq 3m-2$ 这些都适合魔力状态蒸馏。在魔法状态蒸馏中,产生具有目标错误率的魔法状态所需的辅助装置的数量 $\epsilon$ 是 $O(\log^\gamma \epsilon^{-1})$,其中为屈服参数 $\gamma$ 表征间接成本。因为 $k=3m-2$,我们的代码有 $\gamma = \log_2 (2+\frac{6}{3 m-2})$,这倾向于 $1$ as $m \to \infty$。此外, $[[20,7,2]]_3$ 从构造中产生的Qutrit代码 $m=3$ 已经有一个yield参数为 $1.51$ 它比所有已知的小于几百个量子比特的量子比特三正交码都要好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信