Prediabetes subgroups, type 2 diabetes risk, and differential effects of preventive interventions.

Jeanette M Stafford, Ramon Casanova, Byron C Jaeger, Yitbarek Demesie, Brian J Wells, Michael P Bancks
{"title":"Prediabetes subgroups, type 2 diabetes risk, and differential effects of preventive interventions.","authors":"Jeanette M Stafford, Ramon Casanova, Byron C Jaeger, Yitbarek Demesie, Brian J Wells, Michael P Bancks","doi":"10.1210/clinem/dgaf350","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Prior studies have subclassified type 2 diabetes using statistical clustering approaches with clinical data, but few have subclassified prediabetes and assessed effects of preventive interventions. Our objective was to derive prediabetes subgroups based on clinical biomarkers and assess risk for incident diabetes and differential preventive intervention effects within the derived subgroups, with comparison to more simple modeling approaches.</p><p><strong>Methods: </strong>Baseline data for 3145 participants in the Diabetes Prevention Program trial were used to derive prediabetes subgroups using K-means clustering with data for 22 clinical biomarkers (sex-standardized). Cox proportional hazards regression was used to estimate hazard ratios (HR) for diabetes and differential intervention effects (intensive lifestyle, metformin, or placebo) by prediabetes subgroups and to compare the clustering strategy to a model with clinical variables.</p><p><strong>Results: </strong>We identified two prediabetes subgroups characterized by severe insulin resistance with severe obesity (subgroup 1, 31% of sample) and moderate insulin resistance with overweight or obesity (subgroup 2, 69%). Subgroup 1 had 58% higher risk for diabetes (HR: 1.58, 95% confidence interval: 1.31, 1.91) compared to subgroup 2. Randomization to lifestyle (compared to placebo) halved diabetes risk for both subgroups, while metformin provided greater benefit to subgroup 1 versus subgroup 2 (p for interaction <0.05). A clinical variable model discriminated diabetes risk better than the clustering strategy.</p><p><strong>Conclusion: </strong>Pathophysiologically distinct prediabetes subgroups differ in risk for diabetes and preventive benefit from metformin. These results support distinct mechanisms of diabetes susceptibility, however use of clinical prediction models to guide treatment decisions may provide adequate risk profiling.</p>","PeriodicalId":520805,"journal":{"name":"The Journal of clinical endocrinology and metabolism","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of clinical endocrinology and metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1210/clinem/dgaf350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Prior studies have subclassified type 2 diabetes using statistical clustering approaches with clinical data, but few have subclassified prediabetes and assessed effects of preventive interventions. Our objective was to derive prediabetes subgroups based on clinical biomarkers and assess risk for incident diabetes and differential preventive intervention effects within the derived subgroups, with comparison to more simple modeling approaches.

Methods: Baseline data for 3145 participants in the Diabetes Prevention Program trial were used to derive prediabetes subgroups using K-means clustering with data for 22 clinical biomarkers (sex-standardized). Cox proportional hazards regression was used to estimate hazard ratios (HR) for diabetes and differential intervention effects (intensive lifestyle, metformin, or placebo) by prediabetes subgroups and to compare the clustering strategy to a model with clinical variables.

Results: We identified two prediabetes subgroups characterized by severe insulin resistance with severe obesity (subgroup 1, 31% of sample) and moderate insulin resistance with overweight or obesity (subgroup 2, 69%). Subgroup 1 had 58% higher risk for diabetes (HR: 1.58, 95% confidence interval: 1.31, 1.91) compared to subgroup 2. Randomization to lifestyle (compared to placebo) halved diabetes risk for both subgroups, while metformin provided greater benefit to subgroup 1 versus subgroup 2 (p for interaction <0.05). A clinical variable model discriminated diabetes risk better than the clustering strategy.

Conclusion: Pathophysiologically distinct prediabetes subgroups differ in risk for diabetes and preventive benefit from metformin. These results support distinct mechanisms of diabetes susceptibility, however use of clinical prediction models to guide treatment decisions may provide adequate risk profiling.

糖尿病前期亚组,2型糖尿病风险,预防干预的不同效果。
目的:以往的研究采用统计聚类方法结合临床数据对2型糖尿病进行了亚分类,但很少有研究对前驱糖尿病进行亚分类并评估预防干预的效果。我们的目标是根据临床生物标志物得出糖尿病前期亚组,并评估糖尿病发生的风险和衍生亚组中不同的预防干预效果,并与更简单的建模方法进行比较。方法:3145名糖尿病预防计划试验参与者的基线数据,使用K-means聚类法获得22项临床生物标志物(性别标准化)的数据,得出糖尿病前期亚组。使用Cox比例风险回归来估计糖尿病的风险比(HR)和糖尿病前期亚组的不同干预效果(强化生活方式、二甲双胍或安慰剂),并将聚类策略与具有临床变量的模型进行比较。结果:我们确定了两个前驱糖尿病亚组,其特征是伴有严重肥胖的严重胰岛素抵抗(亚组1,占样本的31%)和伴有超重或肥胖的中度胰岛素抵抗(亚组2,占69%)。与亚组2相比,亚组1患糖尿病的风险高58% (HR: 1.58, 95%可信区间:1.31,1.91)。生活方式的随机化(与安慰剂相比)使两个亚组的糖尿病风险减半,而二甲双胍对亚组1比亚组2提供了更大的益处(相互作用p)。结论:病理生理上不同的前驱糖尿病亚组在糖尿病风险和二甲双胍的预防益处方面存在差异。这些结果支持糖尿病易感性的不同机制,然而,使用临床预测模型来指导治疗决策可能提供足够的风险分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信