[Use of routine data in rehabilitation research - Part 1: An overview of type, access, quality and data protection].

IF 2.3 4区 医学 Q3 REHABILITATION
Rehabilitation Pub Date : 2025-06-01 Epub Date: 2025-06-10 DOI:10.1055/a-2575-9422
Martin Brünger, Patrick Brzoska, Jean-Baptist du Prel, Sebastian Ellert, Anne-Kathrin Exner, Tobias Knoop, Sarah Leinberger, Stefanie March, Tatjana Mika, Nancy Reims, Max Rohrbacher, Michael Schuler, Diana Wahidie, Christian Hetzel
{"title":"[Use of routine data in rehabilitation research - Part 1: An overview of type, access, quality and data protection].","authors":"Martin Brünger, Patrick Brzoska, Jean-Baptist du Prel, Sebastian Ellert, Anne-Kathrin Exner, Tobias Knoop, Sarah Leinberger, Stefanie March, Tatjana Mika, Nancy Reims, Max Rohrbacher, Michael Schuler, Diana Wahidie, Christian Hetzel","doi":"10.1055/a-2575-9422","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the high costs of primary studies, use of existing data, so-called routine data, can be particularly suitable for answering care-related research questions in rehabilitation. Previous reviews on the use of routine data have focused on acute care within the purview of the statutory health insurance (GKV), but have largely overlooked rehabilitation and other rehabilitation-relevant service providers such as the German Pension Insurance (DRV), the German Statutory Accident Insurance (DGUV) and the Federal Employment Agency (BA). The aim is to provide an overview of the type, access, quality and data protection aspects of routine data in the context of rehabilitation research, based on existing recommendations, results of a selective literature search, and the authors' own experience. Routine data is characterized by a large number of cases, large scope of characteristics and longitudinal documentation over long periods of time. Access to routine data from the German Pension Insurance and the Federal Employment Agency is comparatively low threshold for researchers, whereas this is not yet equally the case for data of other social insurance providers and of rehabilitation clinics. Furthermore, under certain conditions, routine data can be linked with other routine data and with primary data, which can considerably expand the spectrum of possible research applications. In addition to the advantages of routine data, their limitations must also be considered. Routine data were collected for other purposes and only contain characteristics that are required for administration. A prospective study approach with routine data is possible in principle due to the continuous data collection and documentation, but randomized allocation to interventions is not feasible. In addition, the availability, generalizability and quality of data sets and individual variables must be verified. The Health Data Lab at the Federal Institute for Drugs and Medical Devices does not yet provide for the integration of GKV rehabilitation data or the linking of GKV data with data from other rehabilitation-relevant service providers. Data protection aspects must also be considered. When using pseudonymized data from social insurance providers, an application must be submitted by the data holder to the relevant supervisory authorities in accordance with § 75 Social Security Code X.</p>","PeriodicalId":54504,"journal":{"name":"Rehabilitation","volume":"64 3","pages":"167-175"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rehabilitation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2575-9422","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"REHABILITATION","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the high costs of primary studies, use of existing data, so-called routine data, can be particularly suitable for answering care-related research questions in rehabilitation. Previous reviews on the use of routine data have focused on acute care within the purview of the statutory health insurance (GKV), but have largely overlooked rehabilitation and other rehabilitation-relevant service providers such as the German Pension Insurance (DRV), the German Statutory Accident Insurance (DGUV) and the Federal Employment Agency (BA). The aim is to provide an overview of the type, access, quality and data protection aspects of routine data in the context of rehabilitation research, based on existing recommendations, results of a selective literature search, and the authors' own experience. Routine data is characterized by a large number of cases, large scope of characteristics and longitudinal documentation over long periods of time. Access to routine data from the German Pension Insurance and the Federal Employment Agency is comparatively low threshold for researchers, whereas this is not yet equally the case for data of other social insurance providers and of rehabilitation clinics. Furthermore, under certain conditions, routine data can be linked with other routine data and with primary data, which can considerably expand the spectrum of possible research applications. In addition to the advantages of routine data, their limitations must also be considered. Routine data were collected for other purposes and only contain characteristics that are required for administration. A prospective study approach with routine data is possible in principle due to the continuous data collection and documentation, but randomized allocation to interventions is not feasible. In addition, the availability, generalizability and quality of data sets and individual variables must be verified. The Health Data Lab at the Federal Institute for Drugs and Medical Devices does not yet provide for the integration of GKV rehabilitation data or the linking of GKV data with data from other rehabilitation-relevant service providers. Data protection aspects must also be considered. When using pseudonymized data from social insurance providers, an application must be submitted by the data holder to the relevant supervisory authorities in accordance with § 75 Social Security Code X.

[康复研究中常规数据的使用。第1部分:类型、获取、质量和数据保护概述]。
由于初级研究的高成本,使用现有数据,即所谓的常规数据,可能特别适合回答康复中与护理相关的研究问题。以前对常规数据使用的审查主要集中在法定健康保险(GKV)范围内的急症护理,但在很大程度上忽视了康复和其他与康复相关的服务提供者,如德国养老保险(DRV)、德国法定意外保险(DGUV)和联邦就业局(BA)。目的是在现有建议、选择性文献检索结果和作者自身经验的基础上,概述康复研究背景下常规数据的类型、获取、质量和数据保护方面。常规数据的特点是病例数量多,特征范围大,记录时间长。对研究人员来说,从德国养老保险和联邦就业局获得常规数据的门槛相对较低,而从其他社会保险机构和康复诊所获得数据的门槛还不高。此外,在某些条件下,常规数据可以与其他常规数据和原始数据联系起来,这可以大大扩大可能的研究应用范围。除了常规数据的优点外,还必须考虑其局限性。常规数据是为其他目的收集的,只包含管理所需的特征。由于连续的数据收集和文献记录,常规数据的前瞻性研究方法原则上是可行的,但随机分配干预措施是不可行的。此外,必须核实数据集和个别变量的可用性、普遍性和质量。联邦药物和医疗器械研究所的健康数据实验室尚未规定整合GKV康复数据或将GKV数据与其他康复相关服务提供商的数据联系起来。数据保护方面也必须考虑。当使用来自社会保险提供商的假名数据时,数据持有人必须根据社会保障法典X§75向相关监管机构提交申请。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rehabilitation
Rehabilitation REHABILITATION-
CiteScore
0.90
自引率
11.10%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Die Zeitschrift Die Rehabilitation richtet sich an Mitarbeiterinnen und Mitarbeiter in Einrichtungen, Forschungsinstitutionen und Trägern der Rehabilitation. Sie berichtet über die medizinischen, gesetzlichen, politischen und gesellschaftlichen Grundlagen und Rahmenbedingungen der Rehabilitation und über internationale Entwicklungen auf diesem Gebiet. Schwerpunkte sind dabei Beiträge zu Rehabilitationspraxis (medizinische, berufliche und soziale Rehabilitation, Qualitätsmanagement, neue Konzepte und Versorgungsmodelle zur Anwendung der ICF, Bewegungstherapie etc.), Rehabilitationsforschung (praxisrelevante Ergebnisse, Methoden und Assessments, Leitlinienentwicklung, sozialmedizinische Fragen), Public Health, Sozialmedizin Gesundheits-System-Forschung sowie die daraus resultierenden Probleme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信