Computational modeling and dynamical analysis for B. subtilis competence genic regulation circuit with multiple time delays and external noisy regulation.

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Na Zhao, Haihong Liu, Fang Yan
{"title":"Computational modeling and dynamical analysis for B. subtilis competence genic regulation circuit with multiple time delays and external noisy regulation.","authors":"Na Zhao, Haihong Liu, Fang Yan","doi":"10.1142/S0219720025500052","DOIUrl":null,"url":null,"abstract":"<p><p>Bacillus subtilis (B. subtilis), a bacterium known to enter a competent state spontaneously, has garnered significant attention due to its intricate internal regulatory mechanisms. This study proposes a six-dimensional continuous delay differential equation (DDE) model incorporating two-time delays and a stochastic model that accounts for noise, aimed at delving deeper into the dynamic behaviors of the B. subtilis competence gene regulation circuit. Our investigation reveals that time delays play a crucial role in inducing oscillatory behavior within the continuous DDE model. Analyzing the dynamics of multiple time delays proves to be more intricate than studying a single delay. Furthermore, certain parameter adjustments significantly influence the system's dynamic characteristics. The introduction of noise also triggers oscillations, with the irregular oscillation patterns closely aligning with real-world observations. Intriguingly, the effects of parameters and noise regulation undergo significant changes when time delays are jointly considered. This analysis offers a fresh perspective on understanding B. subtilis competence and provides essential theoretical support for subsequent experimental endeavors in this domain of biomathematics.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"23 2","pages":"2550005"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720025500052","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacillus subtilis (B. subtilis), a bacterium known to enter a competent state spontaneously, has garnered significant attention due to its intricate internal regulatory mechanisms. This study proposes a six-dimensional continuous delay differential equation (DDE) model incorporating two-time delays and a stochastic model that accounts for noise, aimed at delving deeper into the dynamic behaviors of the B. subtilis competence gene regulation circuit. Our investigation reveals that time delays play a crucial role in inducing oscillatory behavior within the continuous DDE model. Analyzing the dynamics of multiple time delays proves to be more intricate than studying a single delay. Furthermore, certain parameter adjustments significantly influence the system's dynamic characteristics. The introduction of noise also triggers oscillations, with the irregular oscillation patterns closely aligning with real-world observations. Intriguingly, the effects of parameters and noise regulation undergo significant changes when time delays are jointly considered. This analysis offers a fresh perspective on understanding B. subtilis competence and provides essential theoretical support for subsequent experimental endeavors in this domain of biomathematics.

具有多时滞和外部噪声调控的枯草芽孢杆菌能力基因调控电路的计算建模与动力学分析。
枯草芽孢杆菌(Bacillus subtilis,简称B. subtilis)是一种已知能自发进入能态的细菌,由于其复杂的内部调控机制而引起了人们的极大关注。为了深入研究枯草芽孢杆菌能力基因调控回路的动态行为,本研究提出了一个包含双时间延迟和考虑噪声的随机模型的六维连续延迟微分方程(DDE)模型。我们的研究表明,在连续DDE模型中,时间延迟在诱导振荡行为中起着至关重要的作用。分析多时滞的动力学比研究单个时滞要复杂得多。此外,某些参数的调整会显著影响系统的动态特性。噪声的引入也会引发振荡,这种不规则的振荡模式与现实世界的观测结果密切相关。有趣的是,当共同考虑时间延迟时,参数和噪声调节的效果会发生显着变化。该分析为了解枯草芽孢杆菌的能力提供了新的视角,并为该生物数学领域的后续实验工作提供了重要的理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信