Ramez Kouzy, Megumi Kai, Huong T Le-Petross, Sadia Saleem, Wendy A Woodward
{"title":"Use of natural language processing to identify patients with inflammatory breast cancer across a health-care system.","authors":"Ramez Kouzy, Megumi Kai, Huong T Le-Petross, Sadia Saleem, Wendy A Woodward","doi":"10.1093/jncics/pkaf058","DOIUrl":null,"url":null,"abstract":"<p><p>Early identification and referral of inflammatory breast cancer remains challenging within large health-care systems, limiting access to specialized care. We developed and evaluated an artificial intelligence-driven platform integrating natural language processing (NLP) with electronic health records to systematically identify potential inflammatory breast cancer patients across 5 campuses. Our platform analyzed 8 623 494 clinical notes, implementing a sequential review process: NLP screening followed by human validation and multidisciplinary confirmation. Initial NLP screening achieved 55.4% positive predictive value, improving to 78.4% with human-in-the-loop review. Notably, among 255 confirmed patients with inflammatory breast cancer, our system demonstrated 92.2% sensitivity, identifying 57 patients (22.4%) that traditional surveillance methods missed. Documentation patterns influenced system performance, with combined inflammatory breast cancer and T4d staging mentions showing the highest predictive value (98.2%). This proof-of-concept study demonstrates that lightweight NLP systems with targeted human review can identify rare cancer cases that may otherwise remain siloed within complex health-care networks, ultimately improving access to specialized care resources.</p>","PeriodicalId":14681,"journal":{"name":"JNCI Cancer Spectrum","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JNCI Cancer Spectrum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jncics/pkaf058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Early identification and referral of inflammatory breast cancer remains challenging within large health-care systems, limiting access to specialized care. We developed and evaluated an artificial intelligence-driven platform integrating natural language processing (NLP) with electronic health records to systematically identify potential inflammatory breast cancer patients across 5 campuses. Our platform analyzed 8 623 494 clinical notes, implementing a sequential review process: NLP screening followed by human validation and multidisciplinary confirmation. Initial NLP screening achieved 55.4% positive predictive value, improving to 78.4% with human-in-the-loop review. Notably, among 255 confirmed patients with inflammatory breast cancer, our system demonstrated 92.2% sensitivity, identifying 57 patients (22.4%) that traditional surveillance methods missed. Documentation patterns influenced system performance, with combined inflammatory breast cancer and T4d staging mentions showing the highest predictive value (98.2%). This proof-of-concept study demonstrates that lightweight NLP systems with targeted human review can identify rare cancer cases that may otherwise remain siloed within complex health-care networks, ultimately improving access to specialized care resources.