Use of natural language processing to identify patients with inflammatory breast cancer across a health-care system.

IF 4.1 Q2 ONCOLOGY
Ramez Kouzy, Megumi Kai, Huong T Le-Petross, Sadia Saleem, Wendy A Woodward
{"title":"Use of natural language processing to identify patients with inflammatory breast cancer across a health-care system.","authors":"Ramez Kouzy, Megumi Kai, Huong T Le-Petross, Sadia Saleem, Wendy A Woodward","doi":"10.1093/jncics/pkaf058","DOIUrl":null,"url":null,"abstract":"<p><p>Early identification and referral of inflammatory breast cancer remains challenging within large health-care systems, limiting access to specialized care. We developed and evaluated an artificial intelligence-driven platform integrating natural language processing (NLP) with electronic health records to systematically identify potential inflammatory breast cancer patients across 5 campuses. Our platform analyzed 8 623 494 clinical notes, implementing a sequential review process: NLP screening followed by human validation and multidisciplinary confirmation. Initial NLP screening achieved 55.4% positive predictive value, improving to 78.4% with human-in-the-loop review. Notably, among 255 confirmed patients with inflammatory breast cancer, our system demonstrated 92.2% sensitivity, identifying 57 patients (22.4%) that traditional surveillance methods missed. Documentation patterns influenced system performance, with combined inflammatory breast cancer and T4d staging mentions showing the highest predictive value (98.2%). This proof-of-concept study demonstrates that lightweight NLP systems with targeted human review can identify rare cancer cases that may otherwise remain siloed within complex health-care networks, ultimately improving access to specialized care resources.</p>","PeriodicalId":14681,"journal":{"name":"JNCI Cancer Spectrum","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JNCI Cancer Spectrum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jncics/pkaf058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Early identification and referral of inflammatory breast cancer remains challenging within large health-care systems, limiting access to specialized care. We developed and evaluated an artificial intelligence-driven platform integrating natural language processing (NLP) with electronic health records to systematically identify potential inflammatory breast cancer patients across 5 campuses. Our platform analyzed 8 623 494 clinical notes, implementing a sequential review process: NLP screening followed by human validation and multidisciplinary confirmation. Initial NLP screening achieved 55.4% positive predictive value, improving to 78.4% with human-in-the-loop review. Notably, among 255 confirmed patients with inflammatory breast cancer, our system demonstrated 92.2% sensitivity, identifying 57 patients (22.4%) that traditional surveillance methods missed. Documentation patterns influenced system performance, with combined inflammatory breast cancer and T4d staging mentions showing the highest predictive value (98.2%). This proof-of-concept study demonstrates that lightweight NLP systems with targeted human review can identify rare cancer cases that may otherwise remain siloed within complex health-care networks, ultimately improving access to specialized care resources.

Abstract Image

使用自然语言处理在整个医疗系统中识别炎性乳腺癌病例。
炎性乳腺癌(IBC)的早期识别和转诊在大型医疗保健系统中仍然具有挑战性,限制了获得专业护理的机会。我们开发并评估了一个人工智能驱动的平台,将自然语言处理(NLP)与电子健康记录集成在一起,系统地识别五个校区的潜在IBC病例。我们的平台分析了8,623,494份临床记录,实施了顺序审查过程:NLP筛选,然后是人类验证和多学科确认。最初的NLP筛选获得了55.4%的阳性预测值,通过human-in-the-loop审查提高到78.4%。值得注意的是,在255例IBC确诊病例中,我们的系统灵敏度为92.2%,识别出57例(22.4%)传统监测方法遗漏的病例。文档模式对系统性能有显著影响,IBC和T4d分期的组合显示出最高的预测值(98.2%)。这项概念验证研究表明,具有针对性的人类审查的轻量级NLP系统可以识别罕见的癌症病例,否则这些病例可能会在复杂的医疗保健网络中保持孤立,最终改善对专业护理资源的获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JNCI Cancer Spectrum
JNCI Cancer Spectrum Medicine-Oncology
CiteScore
7.70
自引率
0.00%
发文量
80
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信