A Comparative Study of Conventional and Tripolar EEG for High-Performance Reach-to-Grasp BCI Systems.

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Ali Rabiee, Sima Ghafoori, Anna Cetera, Maryam Norouzi, Walter Besio, Reza Abiri
{"title":"A Comparative Study of Conventional and Tripolar EEG for High-Performance Reach-to-Grasp BCI Systems.","authors":"Ali Rabiee, Sima Ghafoori, Anna Cetera, Maryam Norouzi, Walter Besio, Reza Abiri","doi":"10.1109/TBME.2025.3578235","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to enhance brain-computer interface (BCI) applications for individuals with motor impairments by comparing the effectiveness of noninvasive tripolar concentric ring electrode electroencephalography (tEEG) with conventional electroencephalography (EEG) technology. The goal is to determine which EEG technology is more effective in measuring and decoding different grasp-related neural signals. The approach involves experimenting on ten healthy participants who performed two distinct reach-and-grasp movements: power grasp and precision grasp, with a no-movement condition serving as the baseline. Our research compares EEG and tEEG in decoding grasping movements, focusing on signal-to-noise ratio (SNR), spatial resolution, and wavelet time-frequency analysis. Additionally, our study involved extracting and analyzing statistical features from the wavelet coefficients, and both binary and multiclass classification methods were employed. Four machine learning algorithms-Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), and Linear Discriminant Analysis (LDA)-were used to evaluate the decoding accuracies. Our results indicated that tEEG demonstrated higher quality performance compared to conventional EEG in various aspects. This included a higher signal-to-noise ratio and improved spatial resolution. Furthermore, wavelet timefrequency analyses validated these findings, with tEEG exhibiting increased power spectra, thus providing a more detailed and informative representation of neural dynamics. The use of tEEG led to significant improvements in decoding accuracy for differentiating grasp movement types. Specifically, tEEG achieved around 90.00% accuracy in binary and 75.97% for multiclass classification. These results exceed those from conventional EEG, which recorded a maximum of 77.85% and 61.27% in similar tasks, respectively.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3578235","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to enhance brain-computer interface (BCI) applications for individuals with motor impairments by comparing the effectiveness of noninvasive tripolar concentric ring electrode electroencephalography (tEEG) with conventional electroencephalography (EEG) technology. The goal is to determine which EEG technology is more effective in measuring and decoding different grasp-related neural signals. The approach involves experimenting on ten healthy participants who performed two distinct reach-and-grasp movements: power grasp and precision grasp, with a no-movement condition serving as the baseline. Our research compares EEG and tEEG in decoding grasping movements, focusing on signal-to-noise ratio (SNR), spatial resolution, and wavelet time-frequency analysis. Additionally, our study involved extracting and analyzing statistical features from the wavelet coefficients, and both binary and multiclass classification methods were employed. Four machine learning algorithms-Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), and Linear Discriminant Analysis (LDA)-were used to evaluate the decoding accuracies. Our results indicated that tEEG demonstrated higher quality performance compared to conventional EEG in various aspects. This included a higher signal-to-noise ratio and improved spatial resolution. Furthermore, wavelet timefrequency analyses validated these findings, with tEEG exhibiting increased power spectra, thus providing a more detailed and informative representation of neural dynamics. The use of tEEG led to significant improvements in decoding accuracy for differentiating grasp movement types. Specifically, tEEG achieved around 90.00% accuracy in binary and 75.97% for multiclass classification. These results exceed those from conventional EEG, which recorded a maximum of 77.85% and 61.27% in similar tasks, respectively.

传统脑电与三极脑电在高性能手握BCI系统中的比较研究。
本研究旨在通过比较无创三极同心圆电极脑电图(tEEG)与传统脑电图(EEG)技术的有效性,加强脑机接口(BCI)在运动障碍患者中的应用。目的是确定哪种脑电图技术在测量和解码不同的抓取相关神经信号方面更有效。该方法包括对10名健康参与者进行实验,他们执行两种不同的伸手抓握动作:力量抓握和精确抓握,以无运动条件为基准。我们的研究比较了EEG和tEEG解码抓取动作,重点是信噪比(SNR),空间分辨率和小波时频分析。此外,我们的研究涉及到从小波系数中提取和分析统计特征,并采用了二值和多类分类方法。四种机器学习算法-随机森林(RF),支持向量机(SVM),极端梯度增强(XGBoost)和线性判别分析(LDA)-被用来评估解码精度。结果表明,与传统脑电图相比,tEEG在多个方面表现出更高的质量表现。这包括更高的信噪比和改进的空间分辨率。此外,小波时频分析验证了这些发现,tEEG显示出更大的功率谱,从而提供了更详细和信息丰富的神经动力学表示。tEEG的使用显著提高了识别抓取运动类型的解码精度。具体来说,tEEG在二元分类上的准确率约为90.00%,在多类分类上的准确率约为75.97%。这些结果超过了传统EEG的最高记录,在类似任务中分别为77.85%和61.27%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信