Fan Dong, Wenjing Guo, Jie Liu, Tucker A Patterson, Huixiao Hong
{"title":"Pharmacovigilance in the digital age: gaining insight from social media data.","authors":"Fan Dong, Wenjing Guo, Jie Liu, Tucker A Patterson, Huixiao Hong","doi":"10.3389/ebm.2025.10555","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmacovigilance is essential for protecting patient health by monitoring and managing medication-related risks. Traditional methods like spontaneous reporting systems and clinical trials are valuable for identifying adverse drug events, but face delays in data access. Social media platforms, with their real-time data, offer a novel avenue for pharmacovigilance by providing a wealth of user-generated content on medication usage, adverse drug events, and public sentiment. However, the unstructured nature of social media content presents challenges in data analysis, including variability and potential biases. Advanced techniques like natural language processing and machine learning are increasingly being employed to extract meaningful information from social media data, aiding in early adverse drug event detection and real-time medication safety monitoring. Ensuring data reliability and addressing ethical considerations are crucial in this context. This review examines the existing literature on the use of social media data for drug safety analysis, highlighting the platforms involved, methodologies applied, and research questions explored. It also discusses the challenges, limitations, and future directions of this emerging field, emphasizing the need for ethical principles, transparency, and interdisciplinary collaboration to maximize the potential of social media in enhancing pharmacovigilance efforts.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":"250 ","pages":"10555"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/ebm.2025.10555","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmacovigilance is essential for protecting patient health by monitoring and managing medication-related risks. Traditional methods like spontaneous reporting systems and clinical trials are valuable for identifying adverse drug events, but face delays in data access. Social media platforms, with their real-time data, offer a novel avenue for pharmacovigilance by providing a wealth of user-generated content on medication usage, adverse drug events, and public sentiment. However, the unstructured nature of social media content presents challenges in data analysis, including variability and potential biases. Advanced techniques like natural language processing and machine learning are increasingly being employed to extract meaningful information from social media data, aiding in early adverse drug event detection and real-time medication safety monitoring. Ensuring data reliability and addressing ethical considerations are crucial in this context. This review examines the existing literature on the use of social media data for drug safety analysis, highlighting the platforms involved, methodologies applied, and research questions explored. It also discusses the challenges, limitations, and future directions of this emerging field, emphasizing the need for ethical principles, transparency, and interdisciplinary collaboration to maximize the potential of social media in enhancing pharmacovigilance efforts.
期刊介绍:
Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population.
Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.