{"title":"Limitations to clinically restoring meaningful peripheral nerve function across gaps and overcoming them.","authors":"Christian A Foy, Damien P Kuffler","doi":"10.3389/ebm.2025.10566","DOIUrl":null,"url":null,"abstract":"<p><p>Clinically, reliably restoring meaningful peripheral sensory and motor nerve function across peripheral nerve gaps is limited. Thus, although autografts are the clinical \"gold standard\" repair technique for bridging nerve gaps, even under relatively good conditions, <50% of patients recover meaningful function. Due to this low recovery rate, many patients are not even provided repair surgery and, consequently, suffer permanent loss of function. This paper examines intrinsic and extrinsic changes associated with injured neurons and Schwann cells that reduce the extent of axon regeneration and recovery. It also examines how these changes can be reversed, leading to enhanced regeneration and recovery. It next examines the efficacy of platelet-rich plasma (PRP) in promoting axon regeneration and two novel techniques involving bridging nerve gaps with an autograft within a platelet-rich (PRP) collagen tube or only a PRP-filled collagen tube, which induce meaningful recovery under conditions where autografts alone are not effective. Finally, it looks at potential mechanisms by which platelet-released factors may enhance axon regeneration and recovery. This review shows that although there are many limitations to restoring meaningful function following peripheral nerve trauma, there are a number of ways these can be overcome. Presently, the most promising techniques involve using PRP.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":"250 ","pages":"10566"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/ebm.2025.10566","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Clinically, reliably restoring meaningful peripheral sensory and motor nerve function across peripheral nerve gaps is limited. Thus, although autografts are the clinical "gold standard" repair technique for bridging nerve gaps, even under relatively good conditions, <50% of patients recover meaningful function. Due to this low recovery rate, many patients are not even provided repair surgery and, consequently, suffer permanent loss of function. This paper examines intrinsic and extrinsic changes associated with injured neurons and Schwann cells that reduce the extent of axon regeneration and recovery. It also examines how these changes can be reversed, leading to enhanced regeneration and recovery. It next examines the efficacy of platelet-rich plasma (PRP) in promoting axon regeneration and two novel techniques involving bridging nerve gaps with an autograft within a platelet-rich (PRP) collagen tube or only a PRP-filled collagen tube, which induce meaningful recovery under conditions where autografts alone are not effective. Finally, it looks at potential mechanisms by which platelet-released factors may enhance axon regeneration and recovery. This review shows that although there are many limitations to restoring meaningful function following peripheral nerve trauma, there are a number of ways these can be overcome. Presently, the most promising techniques involve using PRP.
期刊介绍:
Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population.
Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.