RNF20-mediated H2B monoubiquitination protects stalled forks from degradation and promotes fork restart.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Debanjali Bhattacharya, Harsh Kumar Dwivedi, Ganesh Nagaraju
{"title":"RNF20-mediated H2B monoubiquitination protects stalled forks from degradation and promotes fork restart.","authors":"Debanjali Bhattacharya, Harsh Kumar Dwivedi, Ganesh Nagaraju","doi":"10.1038/s44319-025-00497-3","DOIUrl":null,"url":null,"abstract":"<p><p>Chromatin modifications play an important role in transcription, DNA replication and repair. Nonetheless, whether histone modifications regulate replication stress responses remains obscure. Here, we show that RNF20 localizes to and promotes H2B monoubiquitination (H2Bub) at replicating sites. Knockdown of RNF20 leads to degradation of stalled forks by nucleolytic enzymes, which can be rescued by inhibition of MRE11/DNA2 and co-depletion of SMARCAL1/HLTF/ZRANB3 fork remodelers. RNF20 facilitates the loading of RAD51 and RAD51C at stalled fork sites and acts in the same pathway of RAD51/RAD51C-mediated fork protection and restart. Analyses with RING domain and phosphorylation-deficient mutants of RNF20 show that its catalytic activity and ATR-mediated phosphorylation are essential for its role in replication stress responses. Finally, treatment of RNF20-depleted cells with chromatin relaxing agents rescues fork protection and restart defects. Collectively, our study uncovers a role for RNF20-mediated H2Bub in regulating chromatin dynamics to safeguard replicating genomes.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00497-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chromatin modifications play an important role in transcription, DNA replication and repair. Nonetheless, whether histone modifications regulate replication stress responses remains obscure. Here, we show that RNF20 localizes to and promotes H2B monoubiquitination (H2Bub) at replicating sites. Knockdown of RNF20 leads to degradation of stalled forks by nucleolytic enzymes, which can be rescued by inhibition of MRE11/DNA2 and co-depletion of SMARCAL1/HLTF/ZRANB3 fork remodelers. RNF20 facilitates the loading of RAD51 and RAD51C at stalled fork sites and acts in the same pathway of RAD51/RAD51C-mediated fork protection and restart. Analyses with RING domain and phosphorylation-deficient mutants of RNF20 show that its catalytic activity and ATR-mediated phosphorylation are essential for its role in replication stress responses. Finally, treatment of RNF20-depleted cells with chromatin relaxing agents rescues fork protection and restart defects. Collectively, our study uncovers a role for RNF20-mediated H2Bub in regulating chromatin dynamics to safeguard replicating genomes.

rnf20介导的H2B单泛素化保护停滞分叉免受降解并促进分叉重启。
染色质修饰在转录、DNA复制和修复中起着重要作用。然而,组蛋白修饰是否调节复制应激反应仍然不清楚。在这里,我们发现RNF20定位并促进复制位点的H2B单泛素化(H2Bub)。RNF20的敲低会导致停顿叉被核溶酶降解,这可以通过抑制MRE11/DNA2和共同耗尽SMARCAL1/HLTF/ZRANB3叉重塑子来挽救。RNF20促进了RAD51和RAD51C在停滞分叉位点的加载,并在RAD51/RAD51C介导的分叉保护和重启的同一途径中起作用。对RNF20的RING结构域和磷酸化缺陷突变体的分析表明,其催化活性和atr介导的磷酸化对其在复制应激反应中的作用至关重要。最后,用染色质松弛剂处理rnf20缺失的细胞可以挽救分叉保护和重启缺陷。总的来说,我们的研究揭示了rnf20介导的H2Bub在调节染色质动力学以保护基因组复制中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信