{"title":"The gut microbiota-mediated ferroptosis pathway: a key mechanism of ginsenoside Rd against metabolism-associated fatty liver disease.","authors":"Wenjing Liu, Xian Zhou, Liyu Xiao, Xiaolan Huang, Dennis Chang, Xiaomei Zhong, Minjie Zeng, Yanfang Xian, Yanfang Zheng, Wei Huang, Rui Huang, Mingqing Huang","doi":"10.1186/s13020-025-01121-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ginsenoside Rd (G-Rd), found in Panax species, has shown therapeutic potential against metabolism-associated fatty liver disease (MAFLD), but its mechanism has not been well elucidated. This study investigated the key mechanisms of G-Rd in modulating the gut microbiome and lipid peroxidation-mediated ferroptosis pathway in MAFLD.</p><p><strong>Methods: </strong>A high-fat diet-induced MAFLD model was established. Ultrastructural changes in liver tissue were observed using transmission electron microscopy. Metagenomics were employed to detect alterations in gut microbiota and their metabolites. Biochemical analysis and immunohistochemistry were used to examine liver injury, blood lipids, lipid peroxidation-related indicators, and tissue iron content.</p><p><strong>Results: </strong>G-Rd significantly reduced liver injury and steatosis in MAFLD mice and downregulated the elevated relative abundance of Firmicutes and the Firmicutes/Bacteroidetes ratio. It also significantly reduced the abundances of Faecalibaculum rodentium while increasing Muribaculum intestinale, with its functional role being relevant to lipid metabolism regulation. Moreover, G-Rd ameliorated mitochondrial damage and inhibited the ferroptosis pathway in the liver, which was associated with antioxidant-related factors mediated by Nrf2 signaling. The liver protective effect of G-Rd was driven by the regulation of gut microbiota, as demonstrated by antibiotic cocktail treatment and fecal microbiota transplantation.</p><p><strong>Conclusions: </strong>G-Rd attenuated HFD-induced MAFLD by alleviating liver oxidative stress, lipid peroxidation, and ferroptosis through modulation of the gut microbiota. The antioxidant and anti-ferroptotic actions of G-Rd, mediated via the Nrf2 pathway, were found to contribute to the amelioration of liver injury and hepatic steatosis in MAFLD.</p>","PeriodicalId":10266,"journal":{"name":"Chinese Medicine","volume":"20 1","pages":"83"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150452/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13020-025-01121-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ginsenoside Rd (G-Rd), found in Panax species, has shown therapeutic potential against metabolism-associated fatty liver disease (MAFLD), but its mechanism has not been well elucidated. This study investigated the key mechanisms of G-Rd in modulating the gut microbiome and lipid peroxidation-mediated ferroptosis pathway in MAFLD.
Methods: A high-fat diet-induced MAFLD model was established. Ultrastructural changes in liver tissue were observed using transmission electron microscopy. Metagenomics were employed to detect alterations in gut microbiota and their metabolites. Biochemical analysis and immunohistochemistry were used to examine liver injury, blood lipids, lipid peroxidation-related indicators, and tissue iron content.
Results: G-Rd significantly reduced liver injury and steatosis in MAFLD mice and downregulated the elevated relative abundance of Firmicutes and the Firmicutes/Bacteroidetes ratio. It also significantly reduced the abundances of Faecalibaculum rodentium while increasing Muribaculum intestinale, with its functional role being relevant to lipid metabolism regulation. Moreover, G-Rd ameliorated mitochondrial damage and inhibited the ferroptosis pathway in the liver, which was associated with antioxidant-related factors mediated by Nrf2 signaling. The liver protective effect of G-Rd was driven by the regulation of gut microbiota, as demonstrated by antibiotic cocktail treatment and fecal microbiota transplantation.
Conclusions: G-Rd attenuated HFD-induced MAFLD by alleviating liver oxidative stress, lipid peroxidation, and ferroptosis through modulation of the gut microbiota. The antioxidant and anti-ferroptotic actions of G-Rd, mediated via the Nrf2 pathway, were found to contribute to the amelioration of liver injury and hepatic steatosis in MAFLD.
Chinese MedicineINTEGRATIVE & COMPLEMENTARY MEDICINE-PHARMACOLOGY & PHARMACY
CiteScore
7.90
自引率
4.10%
发文量
133
审稿时长
31 weeks
期刊介绍:
Chinese Medicine is an open access, online journal publishing evidence-based, scientifically justified, and ethical research into all aspects of Chinese medicine.
Areas of interest include recent advances in herbal medicine, clinical nutrition, clinical diagnosis, acupuncture, pharmaceutics, biomedical sciences, epidemiology, education, informatics, sociology, and psychology that are relevant and significant to Chinese medicine. Examples of research approaches include biomedical experimentation, high-throughput technology, clinical trials, systematic reviews, meta-analysis, sampled surveys, simulation, data curation, statistics, omics, translational medicine, and integrative methodologies.
Chinese Medicine is a credible channel to communicate unbiased scientific data, information, and knowledge in Chinese medicine among researchers, clinicians, academics, and students in Chinese medicine and other scientific disciplines of medicine.