Application of the direct interaction approximation in turbulence theory to generalized stochastic models.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-06-01 DOI:10.1063/5.0260737
B K Shivamoggi, N Tuovila
{"title":"Application of the direct interaction approximation in turbulence theory to generalized stochastic models.","authors":"B K Shivamoggi, N Tuovila","doi":"10.1063/5.0260737","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this paper is to seek mathematical insights into Kraichnan's direct-interaction approximation (DIA) in turbulence theory via its application to generalized stochastic models. Previous developments [R. H. Kraichnan, J. Math. Phys. 2, 124-148 (1961); Phys. Fluids 8, 575-598 (1965); B. K. Shivamoggi et al., J. Math. Anal. Appl. 229, 639-658 (1999); B. K. Shivamoggi and N. Tuovila, Chaos 29, 063124 (2019)] were based on the Boltzmann-Gibbs prescription for the underlying entropy measure, which exhibits the extensivity property and is suited for ergodic systems. Here, we proceed further and consider the introduction of an influence bias discriminating rare and frequent events explicitly, as it behooves non-ergodic systems by a using a Tsallis type [C. Tsallis, J. Stat. Phys. 52, 479-487 (1988)] autocorrelation model with an underlying non-extensive entropy measure. As an example of this development, we consider a linear damped stochastic oscillator system and explore the Markovian and non-Markovian regimes separately using Keller's perturbative and the DIA non-perturbative procedures. We find that, in the asymptotic regimes of short-range (white-noise) and long-range (black-noise) autocorrelations, the Tsallis model yields the same result as the Uhlenbeck-Ornstein model. Furthermore, the non-perturbative aspects excluded by Keller's perturbative procedure are found to be negligible in these asymptotic regimes. During the course of this investigation, we also exhibit some apparently novel mathematical properties of the stochastic models in question-the gamma distribution and the Tsallis non-extensive entropy.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0260737","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to seek mathematical insights into Kraichnan's direct-interaction approximation (DIA) in turbulence theory via its application to generalized stochastic models. Previous developments [R. H. Kraichnan, J. Math. Phys. 2, 124-148 (1961); Phys. Fluids 8, 575-598 (1965); B. K. Shivamoggi et al., J. Math. Anal. Appl. 229, 639-658 (1999); B. K. Shivamoggi and N. Tuovila, Chaos 29, 063124 (2019)] were based on the Boltzmann-Gibbs prescription for the underlying entropy measure, which exhibits the extensivity property and is suited for ergodic systems. Here, we proceed further and consider the introduction of an influence bias discriminating rare and frequent events explicitly, as it behooves non-ergodic systems by a using a Tsallis type [C. Tsallis, J. Stat. Phys. 52, 479-487 (1988)] autocorrelation model with an underlying non-extensive entropy measure. As an example of this development, we consider a linear damped stochastic oscillator system and explore the Markovian and non-Markovian regimes separately using Keller's perturbative and the DIA non-perturbative procedures. We find that, in the asymptotic regimes of short-range (white-noise) and long-range (black-noise) autocorrelations, the Tsallis model yields the same result as the Uhlenbeck-Ornstein model. Furthermore, the non-perturbative aspects excluded by Keller's perturbative procedure are found to be negligible in these asymptotic regimes. During the course of this investigation, we also exhibit some apparently novel mathematical properties of the stochastic models in question-the gamma distribution and the Tsallis non-extensive entropy.

湍流理论中直接相互作用近似在广义随机模型中的应用。
本文的目的是通过在广义随机模型中的应用,寻求湍流理论中Kraichnan直接相互作用近似(DIA)的数学见解。过去的发展[R]。H. Kraichnan, J. Math。物理学报,2,124-148 (1961);理论物理。流体8,575 -598 (1965);B. K. Shivamoggi等。分析的。应用229,639-658 (1999);B. K. Shivamoggi和N. Tuovila, Chaos 29, 063124(2019)]基于底层熵测度的Boltzmann-Gibbs处方,该处方表现出扩张性,适用于遍历系统。在这里,我们进一步考虑引入影响偏差来明确区分罕见事件和频繁事件,因为它适用于使用Tsallis类型的非遍历系统[C]。[j] .科学通报,2004,(1):1 - 2。作为这一发展的一个例子,我们考虑了一个线性阻尼随机振荡器系统,并分别使用Keller的微扰和DIA的非微扰过程探索了马尔可夫和非马尔可夫状态。我们发现,在短距离(白噪声)和远距离(黑噪声)自相关的渐近状态下,Tsallis模型产生与Uhlenbeck-Ornstein模型相同的结果。此外,在这些渐近状态下,被Keller微扰过程排除的非微扰方面可以忽略不计。在这个研究过程中,我们也展示了所讨论的随机模型的一些明显新颖的数学性质-伽马分布和Tsallis非广泛熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信