Dissecting the METTL3/STC2 axis in colorectal cancer: implications for drug resistance and metastasis.

IF 5.3 2区 医学 Q2 CELL BIOLOGY
Qiang Su, Kaiyue Wang, Ruohan Liao, Hanyu Zhang, Bochu Wang
{"title":"Dissecting the METTL3/STC2 axis in colorectal cancer: implications for drug resistance and metastasis.","authors":"Qiang Su, Kaiyue Wang, Ruohan Liao, Hanyu Zhang, Bochu Wang","doi":"10.1007/s10565-025-10043-5","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the role of epigenetic modifications, especially N6-methyladenosine (m6A) modifications, in the occurrence and development of cancer has received increasing attention. This study aims to elucidate the role of m6A modification in colorectal cancer (CRC), focusing on the effect of METTL3 on STC2 expression and its effects on cell proliferation, drug resistance and metastasis. Using MeRIP-seq, mRNA-seq, EdU staining, CCK-8 (Cell Counting Kit-8) assay, Transwell assay, Western blot and flow cytometry, this study confirmed that RNA methylation was predominantly located in the CDS region and that STC2 was overexpressed in advanced cancer and 5-FU (5-Fluorouracil)-resistant cell lines. Knockdown of STC2 increased the sensitivity of cells to 5-FU, reduced cell proliferation and metastatic capacity, and indicated that METTL3 positively regulates STC2 m6A modification. Further experiments showed that METTL3 knockdown reduced the IC50 (Half Maximal Inhibitory Concentration) of 5-FU-resistant CRC cells, inhibited cell proliferation, ERS (Endoplasmic Reticulum Stress) and oxidative stress, and reduced KRAS G12 and G13 mutations, and these effects were reversed by STC2 overexpression. In vivo, METTL3 knockdown enhanced the efficacy of 5-FU and inhibited tumor metastasis, whereas STC2 overexpression counterbalanced these benefits. Overall, our findings suggest the METTL3/STC2 axis as a promising therapeutic target to combat drug resistance and metastasis in colorectal cancer.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"41 1","pages":"100"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12152045/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-025-10043-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the role of epigenetic modifications, especially N6-methyladenosine (m6A) modifications, in the occurrence and development of cancer has received increasing attention. This study aims to elucidate the role of m6A modification in colorectal cancer (CRC), focusing on the effect of METTL3 on STC2 expression and its effects on cell proliferation, drug resistance and metastasis. Using MeRIP-seq, mRNA-seq, EdU staining, CCK-8 (Cell Counting Kit-8) assay, Transwell assay, Western blot and flow cytometry, this study confirmed that RNA methylation was predominantly located in the CDS region and that STC2 was overexpressed in advanced cancer and 5-FU (5-Fluorouracil)-resistant cell lines. Knockdown of STC2 increased the sensitivity of cells to 5-FU, reduced cell proliferation and metastatic capacity, and indicated that METTL3 positively regulates STC2 m6A modification. Further experiments showed that METTL3 knockdown reduced the IC50 (Half Maximal Inhibitory Concentration) of 5-FU-resistant CRC cells, inhibited cell proliferation, ERS (Endoplasmic Reticulum Stress) and oxidative stress, and reduced KRAS G12 and G13 mutations, and these effects were reversed by STC2 overexpression. In vivo, METTL3 knockdown enhanced the efficacy of 5-FU and inhibited tumor metastasis, whereas STC2 overexpression counterbalanced these benefits. Overall, our findings suggest the METTL3/STC2 axis as a promising therapeutic target to combat drug resistance and metastasis in colorectal cancer.

结直肠癌中METTL3/STC2轴的解剖:对耐药和转移的影响
近年来,表观遗传修饰,特别是n6 -甲基腺苷(m6A)修饰在癌症发生发展中的作用越来越受到关注。本研究旨在阐明m6A修饰在结直肠癌(CRC)中的作用,重点研究METTL3对STC2表达的影响及其对细胞增殖、耐药和转移的影响。本研究通过MeRIP-seq、mRNA-seq、EdU染色、CCK-8 (Cell Counting Kit-8)检测、Transwell检测、Western blot和流式细胞术证实,RNA甲基化主要位于CDS区,STC2在晚期癌症和5-FU(5-氟尿嘧啶)耐药细胞系中过表达。敲低STC2增加了细胞对5-FU的敏感性,降低了细胞的增殖和转移能力,表明METTL3正调控STC2 m6A修饰。进一步的实验表明,METTL3敲低降低了5- fu耐药CRC细胞的IC50(一半最大抑制浓度),抑制了细胞增殖、内质网应激和氧化应激,减少了KRAS G12和G13突变,这些作用被STC2过表达逆转。在体内,METTL3敲低可增强5-FU的疗效并抑制肿瘤转移,而STC2过表达抵消了这些益处。总的来说,我们的研究结果表明METTL3/STC2轴是对抗结直肠癌耐药和转移的一个有希望的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biology and Toxicology
Cell Biology and Toxicology 生物-毒理学
CiteScore
9.90
自引率
4.90%
发文量
101
审稿时长
>12 weeks
期刊介绍: Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信