GRVT: Improving the Transferability of Adversarial Attacks Through Gradient Related Variance and Input Transformation

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yanlei Wei, Xiaolin Zhang, Yongping Wang, Jingyu Wang, Lixin Liu
{"title":"GRVT: Improving the Transferability of Adversarial Attacks Through Gradient Related Variance and Input Transformation","authors":"Yanlei Wei,&nbsp;Xiaolin Zhang,&nbsp;Yongping Wang,&nbsp;Jingyu Wang,&nbsp;Lixin Liu","doi":"10.1049/cvi2.70034","DOIUrl":null,"url":null,"abstract":"<p>As we all know, the emergence of a large number of adversarial samples reveals the vulnerability of deep neural networks. Attackers seriously affect the performance of models by adding imperceptible perturbations. Although adversarial samples have a high transferability success rate in white-box models, they are less effective in black-box models. To address this problem, this paper proposes a new transferability attack strategy, Gradient Related Variance and Input Transformation Attack (GRVT). First, the image is divided into small blocks, and random transformations are applied to each block to generate diversified images; then, in the gradient update process, the gradient of the neighbourhood area is introduced, and the current gradient is associated with the neighbourhood average gradient through Cosine Similarity. The current gradient direction is adjusted using the associated gradient combined with the previous gradient variance, and a step size reducer adjusts the gradient step size. Experiments on the ILSVRC 2012 dataset show that the transferability success rate of adversarial samples between convolutional neural network (CNN) and vision transformer (ViT) models is higher than that of currently advanced methods. Additionally, the adversarial samples generated on the ensemble model are practical against nine defence strategies. GRVT shows excellent transferability and broad applicability.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70034","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70034","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As we all know, the emergence of a large number of adversarial samples reveals the vulnerability of deep neural networks. Attackers seriously affect the performance of models by adding imperceptible perturbations. Although adversarial samples have a high transferability success rate in white-box models, they are less effective in black-box models. To address this problem, this paper proposes a new transferability attack strategy, Gradient Related Variance and Input Transformation Attack (GRVT). First, the image is divided into small blocks, and random transformations are applied to each block to generate diversified images; then, in the gradient update process, the gradient of the neighbourhood area is introduced, and the current gradient is associated with the neighbourhood average gradient through Cosine Similarity. The current gradient direction is adjusted using the associated gradient combined with the previous gradient variance, and a step size reducer adjusts the gradient step size. Experiments on the ILSVRC 2012 dataset show that the transferability success rate of adversarial samples between convolutional neural network (CNN) and vision transformer (ViT) models is higher than that of currently advanced methods. Additionally, the adversarial samples generated on the ensemble model are practical against nine defence strategies. GRVT shows excellent transferability and broad applicability.

GRVT:通过梯度相关方差和输入变换提高对抗性攻击的可转移性
众所周知,大量对抗性样本的出现暴露了深度神经网络的脆弱性。攻击者通过添加难以察觉的扰动严重影响模型的性能。尽管对抗性样本在白盒模型中具有较高的可转移成功率,但在黑盒模型中效果较差。针对这一问题,本文提出了一种新的可转移性攻击策略——梯度相关方差和输入变换攻击(GRVT)。首先,将图像分成小块,对每个小块进行随机变换,生成多样化的图像;然后,在梯度更新过程中引入邻域梯度,通过余弦相似度将当前梯度与邻域平均梯度相关联;使用关联的梯度结合之前的梯度方差来调整当前的梯度方向,并使用步长减速器来调整梯度步长。在ILSVRC 2012数据集上的实验表明,卷积神经网络(CNN)和视觉变压器(ViT)模型之间的对抗性样本转移成功率高于目前先进的方法。此外,在集成模型上生成的对抗样本对九种防御策略都是实用的。GRVT具有优良的可移植性和广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信