Exploring noncollinear magnetic energy landscapes with Bayesian optimization

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jakob Baumsteiger, Lorenzo Celiberti, Patrick Rinke, Milica Todorović and Cesare Franchini
{"title":"Exploring noncollinear magnetic energy landscapes with Bayesian optimization","authors":"Jakob Baumsteiger, Lorenzo Celiberti, Patrick Rinke, Milica Todorović and Cesare Franchini","doi":"10.1039/D4DD00402G","DOIUrl":null,"url":null,"abstract":"<p >The investigation of magnetic energy landscapes and the search for ground states of magnetic materials using <em>ab initio</em> methods like density functional theory (DFT) is a challenging task. Complex interactions, such as superexchange and spin–orbit coupling, make these calculations computationally expensive and often lead to non-trivial energy landscapes. Consequently, a comprehensive and systematic investigation of large magnetic configuration spaces is often impractical. We approach this problem by utilizing Bayesian optimization, an active machine learning scheme that has proven to be efficient in modeling unknown functions and finding global minima. Using this approach we can obtain the magnetic contribution to the energy as a function of one or more spin canting angles with relatively small numbers of DFT calculations. To assess the capabilities and the efficiency of the approach we investigate the noncollinear magnetic energy landscapes of selected materials containing 3d, 5d and 5f magnetic ions: Ba<small><sub>3</sub></small>MnNb<small><sub>2</sub></small>O<small><sub>9</sub></small>, LaMn<small><sub>2</sub></small>Si<small><sub>2</sub></small>, β-MnO<small><sub>2</sub></small>, Sr<small><sub>2</sub></small>IrO<small><sub>4</sub></small>, UO<small><sub>2</sub></small>, Ba<small><sub>2</sub></small>NaOsO<small><sub>6</sub></small> and kagome RhMn<small><sub>3</sub></small>. By comparing our results to previous <em>ab initio</em> studies that followed more conventional approaches, we observe significant improvements in efficiency.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 6","pages":" 1639-1650"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00402g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00402g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The investigation of magnetic energy landscapes and the search for ground states of magnetic materials using ab initio methods like density functional theory (DFT) is a challenging task. Complex interactions, such as superexchange and spin–orbit coupling, make these calculations computationally expensive and often lead to non-trivial energy landscapes. Consequently, a comprehensive and systematic investigation of large magnetic configuration spaces is often impractical. We approach this problem by utilizing Bayesian optimization, an active machine learning scheme that has proven to be efficient in modeling unknown functions and finding global minima. Using this approach we can obtain the magnetic contribution to the energy as a function of one or more spin canting angles with relatively small numbers of DFT calculations. To assess the capabilities and the efficiency of the approach we investigate the noncollinear magnetic energy landscapes of selected materials containing 3d, 5d and 5f magnetic ions: Ba3MnNb2O9, LaMn2Si2, β-MnO2, Sr2IrO4, UO2, Ba2NaOsO6 and kagome RhMn3. By comparing our results to previous ab initio studies that followed more conventional approaches, we observe significant improvements in efficiency.

Abstract Image

用贝叶斯优化方法探索非共线磁能景观
利用密度泛函理论(DFT)等从头算方法研究磁能景观和寻找磁性材料的基态是一项具有挑战性的任务。复杂的相互作用,如超交换和自旋轨道耦合,使这些计算在计算上昂贵,并且经常导致非平凡的能量景观。因此,对大型磁组态空间进行全面而系统的研究往往是不切实际的。我们通过利用贝叶斯优化来解决这个问题,贝叶斯优化是一种主动的机器学习方案,已被证明在建模未知函数和寻找全局最小值方面是有效的。利用这种方法,我们可以用相对较少的DFT计算得到磁对能量的贡献作为一个或多个自旋倾斜角的函数。为了评估该方法的能力和效率,我们研究了含有3d、5d和5f磁性离子的材料的非线性共线磁能景观:Ba3MnNb2O9、LaMn2Si2、β-MnO2、Sr2IrO4、UO2、Ba2NaOsO6和kagome RhMn3。通过将我们的结果与之前遵循更传统方法的从头计算研究进行比较,我们观察到效率的显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信