Machine learning-assisted profiling of a kinked ladder polymer structure using scattering†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lijie Ding, Chi-Huan Tung, Zhiqiang Cao, Zekun Ye, Xiaodan Gu, Yan Xia, Wei-Ren Chen and Changwoo Do
{"title":"Machine learning-assisted profiling of a kinked ladder polymer structure using scattering†","authors":"Lijie Ding, Chi-Huan Tung, Zhiqiang Cao, Zekun Ye, Xiaodan Gu, Yan Xia, Wei-Ren Chen and Changwoo Do","doi":"10.1039/D5DD00051C","DOIUrl":null,"url":null,"abstract":"<p >Ladder polymers consisting of fused rings in the backbone have very limited conformational freedom, which results in very different properties from traditional linear polymers. However, accurately determining their size and chain conformations from solution scattering remains a challenge. Their chain conformations of kinked ladder polymers are largely governed by the structures and relative orientations or configurations of the repeat units, unlike conventional polymer chains whose bending angles between repeat units follow a unimodal Gaussian distribution. Meanwhile, traditional scattering models for polymer chains do not account for these unique structural features. This work introduces a novel approach that integrates machine learning with Monte Carlo simulations to construct a model that can describe the geometry of a type of kinked CANAL ladder polymers. We first develop a Monte Carlo simulation model for sampling the configuration space of CANAL ladder polymers, where each repeat unit is modeled as a biaxial segment. Then, we establish a machine learning-assisted scattering analysis framework based on Gaussian Process Regression. Finally, we conduct small-angle neutron scattering experiments on a CANAL ladder polymer solution to apply our approach. Our method uncovers structural features of such ladder polymers that conventional methods fail to capture.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 6","pages":" 1570-1577"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00051c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00051c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ladder polymers consisting of fused rings in the backbone have very limited conformational freedom, which results in very different properties from traditional linear polymers. However, accurately determining their size and chain conformations from solution scattering remains a challenge. Their chain conformations of kinked ladder polymers are largely governed by the structures and relative orientations or configurations of the repeat units, unlike conventional polymer chains whose bending angles between repeat units follow a unimodal Gaussian distribution. Meanwhile, traditional scattering models for polymer chains do not account for these unique structural features. This work introduces a novel approach that integrates machine learning with Monte Carlo simulations to construct a model that can describe the geometry of a type of kinked CANAL ladder polymers. We first develop a Monte Carlo simulation model for sampling the configuration space of CANAL ladder polymers, where each repeat unit is modeled as a biaxial segment. Then, we establish a machine learning-assisted scattering analysis framework based on Gaussian Process Regression. Finally, we conduct small-angle neutron scattering experiments on a CANAL ladder polymer solution to apply our approach. Our method uncovers structural features of such ladder polymers that conventional methods fail to capture.

Abstract Image

利用散射法对一种扭结梯状聚合物结构进行机器学习辅助分析
由主链上的熔合环组成的梯状聚合物具有非常有限的构象自由度,这使得梯状聚合物的性质与传统的线性聚合物大不相同。然而,从溶液散射中准确确定它们的大小和链构象仍然是一个挑战。与传统聚合物链不同,它们的链状构象在很大程度上受重复单元的结构和相对取向或构型的支配,而重复单元之间的弯曲角度遵循单峰高斯分布。同时,传统的聚合物链散射模型并没有考虑到这些独特的结构特征。这项工作引入了一种新颖的方法,将机器学习与蒙特卡罗模拟相结合,构建了一个可以描述一种缠绕的CANAL阶梯聚合物几何形状的模型。我们首先开发了一个蒙特卡罗模拟模型,用于对CANAL阶梯聚合物的构型空间进行采样,其中每个重复单元都被建模为双轴段。然后,我们建立了一个基于高斯过程回归的机器学习辅助散射分析框架。最后,我们在CANAL阶梯聚合物溶液上进行了小角中子散射实验来应用我们的方法。我们的方法揭示了这种阶梯聚合物的结构特征,这是传统方法无法捕获的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信