Classification of (dis)ordered structures as superionic lithium conductors with an experimental structure–conductivity database†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Daniel B. McHaffie, Zachery W. B. Iton, Jadon M. Bienz, Forrest A. L. Laskowski and Kimberly A. See
{"title":"Classification of (dis)ordered structures as superionic lithium conductors with an experimental structure–conductivity database†","authors":"Daniel B. McHaffie, Zachery W. B. Iton, Jadon M. Bienz, Forrest A. L. Laskowski and Kimberly A. See","doi":"10.1039/D5DD00052A","DOIUrl":null,"url":null,"abstract":"<p >Solid-state electrolytes (SSEs) are critical for the development of high-performance all-solid-state batteries. Data-driven efforts to discover novel SSEs have been constrained by the absence of databases linking ionic conductivity with structure, as well as by challenges in encoding structural information for the disorder that is often found in superionic conductors. Here, we construct the largest database to date of experimentally measured ionic conductivity values paired with corresponding crystal structures, comprising 548 Li-containing compounds. Graph-based features, derived using a transfer learning framework, enable learning directly from disordered crystals, and AtomSets models leveraging these features outperform domain-specific features in a classification task. These models are employed to screen the Inorganic Crystal Structure Database (ICSD) and Materials Project for superionic Li-containing compounds. We identify 241 compounds with predicted superionic conductivity and band gaps greater than 1 eV. Experimental validation confirming superionic conductivity in one of these candidates, Li<small><sub>9</sub></small>B<small><sub>19</sub></small>S<small><sub>33</sub></small>, demonstrates the utility of this approach for the discovery and development of advanced SSEs for all-solid-state batteries.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 6","pages":" 1518-1533"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00052a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00052a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state electrolytes (SSEs) are critical for the development of high-performance all-solid-state batteries. Data-driven efforts to discover novel SSEs have been constrained by the absence of databases linking ionic conductivity with structure, as well as by challenges in encoding structural information for the disorder that is often found in superionic conductors. Here, we construct the largest database to date of experimentally measured ionic conductivity values paired with corresponding crystal structures, comprising 548 Li-containing compounds. Graph-based features, derived using a transfer learning framework, enable learning directly from disordered crystals, and AtomSets models leveraging these features outperform domain-specific features in a classification task. These models are employed to screen the Inorganic Crystal Structure Database (ICSD) and Materials Project for superionic Li-containing compounds. We identify 241 compounds with predicted superionic conductivity and band gaps greater than 1 eV. Experimental validation confirming superionic conductivity in one of these candidates, Li9B19S33, demonstrates the utility of this approach for the discovery and development of advanced SSEs for all-solid-state batteries.

Abstract Image

超离子锂导体(非)有序结构的分类与实验结构-电导率数据库†
固态电解质对于高性能全固态电池的发展至关重要。由于缺乏将离子电导率与结构联系起来的数据库,以及对超离子导体中经常发现的无序结构信息进行编码的挑战,数据驱动的发现新型sse的努力受到了限制。在这里,我们构建了迄今为止最大的实验测量离子电导率值与相应晶体结构配对的数据库,包括548种含锂化合物。使用迁移学习框架派生的基于图的特征可以直接从无序晶体中学习,并且利用这些特征的AtomSets模型在分类任务中优于特定领域的特征。这些模型被用于筛选无机晶体结构数据库(ICSD)和材料项目中超离子含锂化合物。我们发现241种化合物具有超离子电导率和带隙大于1ev的预测。实验验证证实了其中一种候选材料Li9B19S33的超离子导电性,证明了这种方法在发现和开发用于全固态电池的先进sse方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信