BoTier: multi-objective Bayesian optimization with tiered objective structures†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mohammad Haddadnia, Leonie Grashoff and Felix Strieth-Kalthoff
{"title":"BoTier: multi-objective Bayesian optimization with tiered objective structures†","authors":"Mohammad Haddadnia, Leonie Grashoff and Felix Strieth-Kalthoff","doi":"10.1039/D5DD00039D","DOIUrl":null,"url":null,"abstract":"<p >Scientific optimization problems are usually concerned with balancing multiple competing objectives that express preferences over both the outcomes of an experiment (<em>e.g.</em> maximize reaction yield) and the corresponding input parameters (<em>e.g.</em> minimize the use of an expensive reagent). In practice, operational and economic considerations often establish a hierarchy of these objectives, which must be reflected in algorithms for sample-efficient experiment planning. Herein, we introduce <em>BoTier</em>, a software library that can flexibly represent a hierarchy of preferences over experiment outcomes and input parameters. We provide systematic benchmarks on synthetic and real-life surfaces, demonstrating the robust applicability of <em>BoTier</em> across a number of use cases. Importantly, <em>BoTier</em> is implemented in an auto-differentiable fashion, enabling seamless integration with the <em>BoTorch</em> library, thereby facilitating adoption by the scientific community.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 6","pages":" 1417-1422"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00039d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00039d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Scientific optimization problems are usually concerned with balancing multiple competing objectives that express preferences over both the outcomes of an experiment (e.g. maximize reaction yield) and the corresponding input parameters (e.g. minimize the use of an expensive reagent). In practice, operational and economic considerations often establish a hierarchy of these objectives, which must be reflected in algorithms for sample-efficient experiment planning. Herein, we introduce BoTier, a software library that can flexibly represent a hierarchy of preferences over experiment outcomes and input parameters. We provide systematic benchmarks on synthetic and real-life surfaces, demonstrating the robust applicability of BoTier across a number of use cases. Importantly, BoTier is implemented in an auto-differentiable fashion, enabling seamless integration with the BoTorch library, thereby facilitating adoption by the scientific community.

Abstract Image

BoTier:具有分层目标结构的多目标贝叶斯优化
科学优化问题通常涉及平衡多个相互竞争的目标,这些目标表达了对实验结果(例如最大限度地提高反应收率)和相应输入参数(例如最大限度地减少昂贵试剂的使用)的偏好。在实践中,操作和经济方面的考虑经常建立这些目标的层次结构,这必须反映在样本效率实验计划的算法中。在这里,我们介绍了BoTier,一个软件库,可以灵活地表示实验结果和输入参数的偏好层次。我们在合成表面和实际表面上提供了系统的基准测试,证明了BoTier在许多用例中的强大适用性。重要的是,BoTier以一种可自动区分的方式实现,能够与BoTorch库无缝集成,从而促进科学界的采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信