RSUIA: Dynamic No-Reference Underwater Image Assessment via Reinforcement Sequences

IF 9.7 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jingchun Zhou;Chunjiang Liu;Dehuan Zhang;Zongxin He;Ferdous Sohel;Qiuping Jiang
{"title":"RSUIA: Dynamic No-Reference Underwater Image Assessment via Reinforcement Sequences","authors":"Jingchun Zhou;Chunjiang Liu;Dehuan Zhang;Zongxin He;Ferdous Sohel;Qiuping Jiang","doi":"10.1109/TMM.2025.3535308","DOIUrl":null,"url":null,"abstract":"Underwater image quality assessment (UIQA) is a challenging task due to the complexities of underwater environments. Traditional UIQA methods primarily rely on fitting mean opinion scores (MOS), which are limited by human visual biases. To address the above limitation, we propose a no-reference underwater image quality assessment paradigm using reinforcement sequences. Our paradigm leverages reinforcement learning to iteratively merge the input image with the corresponding ground truth, generating an optimized sequence of images. A classifier generates probability arrays for the optimized sequence, which are converted into objective scores by a regression model. Unlike existing methods that focus solely on the final quality score, our paradigm emphasizes dynamic quality changes throughout the image-enhancement process. By employing objective mixing ratio labels, our reinforcement sequence dataset reduces subjective bias. The multiscale classifier captures local and global information differences between the input and ground truth images, effectively preserving the contrast and detail in diverse lighting conditions. Our paradigm combines multi-source data classification with support vector regression, optimizing the mapping of feature vectors to quality scores through fine-tuning libsvm kernel parameters. Experimental results on multiple benchmark datasets demonstrate that our paradigm outperforms the state-of-the-art UIQA methods, providing an effective solution for Underwater Image quality Assessment via Reinforcement Sequences (RSUIA).","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"3542-3555"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10874146/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater image quality assessment (UIQA) is a challenging task due to the complexities of underwater environments. Traditional UIQA methods primarily rely on fitting mean opinion scores (MOS), which are limited by human visual biases. To address the above limitation, we propose a no-reference underwater image quality assessment paradigm using reinforcement sequences. Our paradigm leverages reinforcement learning to iteratively merge the input image with the corresponding ground truth, generating an optimized sequence of images. A classifier generates probability arrays for the optimized sequence, which are converted into objective scores by a regression model. Unlike existing methods that focus solely on the final quality score, our paradigm emphasizes dynamic quality changes throughout the image-enhancement process. By employing objective mixing ratio labels, our reinforcement sequence dataset reduces subjective bias. The multiscale classifier captures local and global information differences between the input and ground truth images, effectively preserving the contrast and detail in diverse lighting conditions. Our paradigm combines multi-source data classification with support vector regression, optimizing the mapping of feature vectors to quality scores through fine-tuning libsvm kernel parameters. Experimental results on multiple benchmark datasets demonstrate that our paradigm outperforms the state-of-the-art UIQA methods, providing an effective solution for Underwater Image quality Assessment via Reinforcement Sequences (RSUIA).
RSUIA:基于增强序列的动态无参考水下图像评估
由于水下环境的复杂性,水下图像质量评估(UIQA)是一项具有挑战性的任务。传统的UIQA方法主要依赖于拟合平均意见分数(MOS),这受到人类视觉偏见的限制。为了解决上述限制,我们提出了一种使用增强序列的无参考水下图像质量评估范式。我们的范例利用强化学习迭代地将输入图像与相应的ground truth合并,生成优化的图像序列。分类器对优化后的序列生成概率数组,通过回归模型将概率数组转换为目标分数。与只关注最终质量分数的现有方法不同,我们的范例强调整个图像增强过程中的动态质量变化。通过使用客观混合比例标签,我们的强化序列数据集减少了主观偏见。多尺度分类器捕获输入图像和真实图像之间的局部和全局信息差异,在不同光照条件下有效地保持对比度和细节。我们的范例将多源数据分类与支持向量回归相结合,通过微调libsvm内核参数来优化特征向量到质量分数的映射。在多个基准数据集上的实验结果表明,我们的范式优于最先进的UIQA方法,为通过增强序列(RSUIA)进行水下图像质量评估提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信