Facial Action Units as a Joint Dataset Training Bridge for Facial Expression Recognition

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shuyi Mao;Xinpeng Li;Fan Zhang;Xiaojiang Peng;Yang Yang
{"title":"Facial Action Units as a Joint Dataset Training Bridge for Facial Expression Recognition","authors":"Shuyi Mao;Xinpeng Li;Fan Zhang;Xiaojiang Peng;Yang Yang","doi":"10.1109/TMM.2025.3535327","DOIUrl":null,"url":null,"abstract":"Label biases in facial expression recognition (FER) datasets, caused by annotators' subjectivity, pose challenges in improving the performance of target datasets when auxiliary labeled data are used. Moreover, training with multiple datasets can lead to visible degradations in the target dataset. To address these issues, we propose a novel framework called the AU-aware Vision Transformer (AU-ViT), which leverages unified action unit (AU) information and discards expression annotations of auxiliary data. AU-ViT integrates an elaborately designed AU branch in the middle part of a master ViT to enhance representation learning during training. Through qualitative and quantitative analyses, we demonstrate that AU-ViT effectively captures expression regions and is robust to real-world occlusions. Additionally, we observe that AU-ViT also yields performance improvements on the target dataset, even without auxiliary data, by utilizing pseudo AU labels. Our AU-ViT achieves performances superior to, or comparable to, that of the state-of-the-art methods on FERPlus, RAFDB, AffectNet, LSD and the other three occlusion test datasets.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"3331-3342"},"PeriodicalIF":8.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10855502/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Label biases in facial expression recognition (FER) datasets, caused by annotators' subjectivity, pose challenges in improving the performance of target datasets when auxiliary labeled data are used. Moreover, training with multiple datasets can lead to visible degradations in the target dataset. To address these issues, we propose a novel framework called the AU-aware Vision Transformer (AU-ViT), which leverages unified action unit (AU) information and discards expression annotations of auxiliary data. AU-ViT integrates an elaborately designed AU branch in the middle part of a master ViT to enhance representation learning during training. Through qualitative and quantitative analyses, we demonstrate that AU-ViT effectively captures expression regions and is robust to real-world occlusions. Additionally, we observe that AU-ViT also yields performance improvements on the target dataset, even without auxiliary data, by utilizing pseudo AU labels. Our AU-ViT achieves performances superior to, or comparable to, that of the state-of-the-art methods on FERPlus, RAFDB, AffectNet, LSD and the other three occlusion test datasets.
面部动作单元作为面部表情识别的联合数据集训练桥梁
面部表情识别(FER)数据集中的标签偏差是由注释者的主观性引起的,当使用辅助标记数据时,对目标数据集的性能提高提出了挑战。此外,使用多个数据集进行训练可能会导致目标数据集出现明显的退化。为了解决这些问题,我们提出了一种新的框架,称为AU感知视觉转换器(AU- vit),它利用统一的动作单元(AU)信息并放弃辅助数据的表达式注释。AU-ViT在主ViT的中间部分整合了精心设计的AU分支机构,以加强培训期间的代表学习。通过定性和定量分析,我们证明AU-ViT有效捕获表达区域,并且对真实世界的闭塞具有鲁棒性。此外,我们观察到,即使没有辅助数据,通过使用伪AU标签,AU- vit也能在目标数据集上产生性能改进。我们的AU-ViT在FERPlus、RAFDB、AffectNet、LSD和其他三个遮挡测试数据集上的性能优于或可与之媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信