{"title":"Latent Watermark: Inject and Detect Watermarks in Latent Diffusion Space","authors":"Zheling Meng;Bo Peng;Jing Dong","doi":"10.1109/TMM.2025.3535300","DOIUrl":null,"url":null,"abstract":"Watermarking is a tool for actively identifying and attributing the images generated by latent diffusion models. Existing methods face the dilemma of image quality and watermark robustness. Watermarks with superior image quality usually have inferior robustness against attacks such as blurring and JPEG compression, while watermarks with superior robustness usually significantly damage image quality. This dilemma stems from the traditional paradigm where watermarks are injected and detected in pixel space, relying on pixel perturbation for watermark detection and resilience against attacks. In this paper, we highlight that an effective solution to the problem is to both inject and detect watermarks in the latent diffusion space, and propose Latent Watermark with a progressive training strategy. It weakens the direct connection between quality and robustness and thus alleviates their contradiction. We conduct evaluations on two datasets and against 10 watermark attacks. Six metrics measure the image quality and watermark robustness. Results show that compared to the recently proposed methods such as StableSignature, StegaStamp, RoSteALS, LaWa, TreeRing, and DiffuseTrace, LW not only surpasses them in terms of robustness but also offers superior image quality.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"3399-3410"},"PeriodicalIF":8.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10855467/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Watermarking is a tool for actively identifying and attributing the images generated by latent diffusion models. Existing methods face the dilemma of image quality and watermark robustness. Watermarks with superior image quality usually have inferior robustness against attacks such as blurring and JPEG compression, while watermarks with superior robustness usually significantly damage image quality. This dilemma stems from the traditional paradigm where watermarks are injected and detected in pixel space, relying on pixel perturbation for watermark detection and resilience against attacks. In this paper, we highlight that an effective solution to the problem is to both inject and detect watermarks in the latent diffusion space, and propose Latent Watermark with a progressive training strategy. It weakens the direct connection between quality and robustness and thus alleviates their contradiction. We conduct evaluations on two datasets and against 10 watermark attacks. Six metrics measure the image quality and watermark robustness. Results show that compared to the recently proposed methods such as StableSignature, StegaStamp, RoSteALS, LaWa, TreeRing, and DiffuseTrace, LW not only surpasses them in terms of robustness but also offers superior image quality.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.