Probing nanoscale variant distribution in a heterogenous α/β titanium alloy

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yandi Jia , Yingjie Ma , Rongpei Shi , Yuexin Zhou , Qian Wang , Sensen Huang , Min Qi , Dong Wang , Jiafeng Lei , Rui Yang
{"title":"Probing nanoscale variant distribution in a heterogenous α/β titanium alloy","authors":"Yandi Jia ,&nbsp;Yingjie Ma ,&nbsp;Rongpei Shi ,&nbsp;Yuexin Zhou ,&nbsp;Qian Wang ,&nbsp;Sensen Huang ,&nbsp;Min Qi ,&nbsp;Dong Wang ,&nbsp;Jiafeng Lei ,&nbsp;Rui Yang","doi":"10.1016/j.actamat.2025.121148","DOIUrl":null,"url":null,"abstract":"<div><div>In titanium alloys, engineering highly heterogeneous <em>α</em>-phase precipitate microstructure—comprising micron-scale primary <em>α</em> and nano-scale secondary <em>α</em> precipitates—offers a promising strategy to bypass the strength-ductility trade-off. Beyond classical microstructure descriptors (e.g., volume fraction, size, shape, orientation, coherency state, and spatial distribution), the variant distribution of precipitates crucially governs mechanical properties. However, the variant distribution behavior remains poorly understood for super-refined <em>α</em> precipitate (<span><math><mrow><mo>&lt;</mo><mn>100</mn><mspace></mspace><mtext>nm</mtext></mrow></math></span>). For the first time, this work systematically investigates the size-dependent variant distribution of <em>α</em> precipitates in an <em>α</em>/<em>β</em> Ti alloy by integrating Transmission Kikuchi Diffraction (TKD) characterization and crystallographic analysis. Notably, inter-variant misorientation is quantified using misorientation axis analysis rather than conventional angular thresholds. A precipitate size-dependent variant distribution is identified, where the spatial correlation and occurrence frequency of <em>α</em> variants linked by the Type B misorientation axis-angle pair <span><math><mrow><msub><mrow><mo>[</mo><mover><mrow><mn>1</mn></mrow><mo>‾</mo></mover><mn>2</mn><mover><mrow><mn>1</mn></mrow><mo>‾</mo></mover><mn>0</mn><mo>]</mo></mrow><mi>α</mi></msub><mo>/</mo><mn>60.0</mn><mtext>°</mtext></mrow></math></span> strengthens as precipitate size decreases. These experimental observations are validated through phase-field simulations that generate <em>α</em> precipitates with varying sizes and number densities. Mechanistic analysis reveals that finer <em>α</em> precipitates, formed via an <em>ω</em>-assisted nucleation mechanism, amplify elastic interactions that promote strain-induced correlated nucleation, driving the stronger preference of Type B inter-variant correlations. The study provides crucial insights into the distribution and characteristics of the super-refined <em>α</em> phase in titanium alloys and may contribute to the understanding of deformation mechanism of the highly heterogeneous precipitate microstructure.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"296 ","pages":"Article 121148"},"PeriodicalIF":8.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425004367","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In titanium alloys, engineering highly heterogeneous α-phase precipitate microstructure—comprising micron-scale primary α and nano-scale secondary α precipitates—offers a promising strategy to bypass the strength-ductility trade-off. Beyond classical microstructure descriptors (e.g., volume fraction, size, shape, orientation, coherency state, and spatial distribution), the variant distribution of precipitates crucially governs mechanical properties. However, the variant distribution behavior remains poorly understood for super-refined α precipitate (<100nm). For the first time, this work systematically investigates the size-dependent variant distribution of α precipitates in an α/β Ti alloy by integrating Transmission Kikuchi Diffraction (TKD) characterization and crystallographic analysis. Notably, inter-variant misorientation is quantified using misorientation axis analysis rather than conventional angular thresholds. A precipitate size-dependent variant distribution is identified, where the spatial correlation and occurrence frequency of α variants linked by the Type B misorientation axis-angle pair [1210]α/60.0° strengthens as precipitate size decreases. These experimental observations are validated through phase-field simulations that generate α precipitates with varying sizes and number densities. Mechanistic analysis reveals that finer α precipitates, formed via an ω-assisted nucleation mechanism, amplify elastic interactions that promote strain-induced correlated nucleation, driving the stronger preference of Type B inter-variant correlations. The study provides crucial insights into the distribution and characteristics of the super-refined α phase in titanium alloys and may contribute to the understanding of deformation mechanism of the highly heterogeneous precipitate microstructure.

Abstract Image

非均相α/β钛合金纳米尺度变异分布的探测
在钛合金中,设计高度非均相α相的显微组织——包括微米尺度的初级α和纳米尺度的次级α沉淀——提供了一种很有前途的策略来绕过强度和延性的权衡。除了经典的微观结构描述符(如体积分数、尺寸、形状、取向、相干状态和空间分布)之外,析出物的不同分布对力学性能起着至关重要的作用。然而,对于超精炼α析出物(<100nm)的变异分布行为仍然知之甚少。本文首次采用透射菊池衍射(TKD)表征和晶体学分析相结合的方法,系统地研究了α/β钛合金中α析出相的尺寸变化分布。值得注意的是,使用错向轴分析而不是传统的角度阈值来量化变量间的错向。识别出沉淀尺寸相关的变异分布,其中由B型错取向轴-角对[1 - 21 - 0]α/60.0°连接的α变异的空间相关性和发生频率随着沉淀尺寸的减小而增强。这些实验结果通过相场模拟得到了验证,相场模拟产生了不同大小和密度的α沉淀。机制分析表明,通过ω辅助形核机制形成的细α相,放大了弹性相互作用,促进了应变诱导的相关形核,驱动了B型变异体间相关性的更强偏好。该研究为进一步了解钛合金中超细化α相的分布和特征提供了重要的依据,并有助于理解高度非均相析出组织的变形机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信