Fengjie Yin , Guoqing Cai , Xuzhen He , Yanlin Su , Xu Yang , Wenjie Zheng
{"title":"Elucidating the strain rate-dependent mechanical properties of unsaturated red clay under controlled thermal and suction environments","authors":"Fengjie Yin , Guoqing Cai , Xuzhen He , Yanlin Su , Xu Yang , Wenjie Zheng","doi":"10.1016/j.trgeo.2025.101600","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the strain-rate-dependent mechanical properties of unsaturated red clay under varying temperatures and matric suction conditions through triaxial shear tests on red clay fill materials from the Sichuan-Tibet Railway region. The tests were conducted with multiple shear strain rates, complemented by advanced microstructural analysis techniques such as mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM), to examine the evolution of pore structure. The results indicate that high matric suction significantly reduces the rate-dependency of strength in red clay fill materials, whereas temperature has a relatively smaller effect. As matric suction increases, the strain-rate parameter decreases across different temperatures, with a diminishing rate effect observed at higher suction levels. Compared to temperature, strain rate has a more pronounced influence on failure time. An increase in strain rate leads to a significant reduction in failure time. At low strain rates, failure time exhibits substantial variability, while at high strain rates, the effects of temperature and matric suction on failure time become less significant. Under high-temperature conditions, the strength of red clay is enhanced, and failure time is delayed. These findings provide critical theoretical support for controlling settlement deformation and predicting failure times of subgrade fill materials under complex climatic conditions, offering valuable insights for engineering applications.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"53 ","pages":"Article 101600"},"PeriodicalIF":4.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225001199","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the strain-rate-dependent mechanical properties of unsaturated red clay under varying temperatures and matric suction conditions through triaxial shear tests on red clay fill materials from the Sichuan-Tibet Railway region. The tests were conducted with multiple shear strain rates, complemented by advanced microstructural analysis techniques such as mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM), to examine the evolution of pore structure. The results indicate that high matric suction significantly reduces the rate-dependency of strength in red clay fill materials, whereas temperature has a relatively smaller effect. As matric suction increases, the strain-rate parameter decreases across different temperatures, with a diminishing rate effect observed at higher suction levels. Compared to temperature, strain rate has a more pronounced influence on failure time. An increase in strain rate leads to a significant reduction in failure time. At low strain rates, failure time exhibits substantial variability, while at high strain rates, the effects of temperature and matric suction on failure time become less significant. Under high-temperature conditions, the strength of red clay is enhanced, and failure time is delayed. These findings provide critical theoretical support for controlling settlement deformation and predicting failure times of subgrade fill materials under complex climatic conditions, offering valuable insights for engineering applications.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.