DFUN-KDF: Efficient and robust decentralized federated framework for UAV networks via knowledge distillation and filtering

IF 14.5 Q1 TRANSPORTATION
Wenyuan Yang , Yuhang Liu , Xinlin Leng , Hanlin Gu , Gege Jiang , Xiaochuan Yu , Xiaochun Cao
{"title":"DFUN-KDF: Efficient and robust decentralized federated framework for UAV networks via knowledge distillation and filtering","authors":"Wenyuan Yang ,&nbsp;Yuhang Liu ,&nbsp;Xinlin Leng ,&nbsp;Hanlin Gu ,&nbsp;Gege Jiang ,&nbsp;Xiaochuan Yu ,&nbsp;Xiaochun Cao","doi":"10.1016/j.commtr.2025.100173","DOIUrl":null,"url":null,"abstract":"<div><div>Unmanned aerial vehicles (UAVs) are increasingly crucial across various fields. There is a growing interest in using federated learning (FL) methods to enhance the efficiency of UAV operations. Nevertheless, incumbent methods remain encumbered by significant drawbacks, including high energy consumption from extensive parameter exchanges, the imperative for homogeneous networks, and sensitivity to single-point failures. These difficulties are compounded by the unreliable nature of communication channels and the current inability to effectively manage the diversity of UAV models, highlighting the imperative for more resilient and adaptable FL solutions. To address these issues, we propose an efficient and robust decentralized FL framework for heterogeneous UAV networks. Our framework first leverages the knowledge distillation where UAVs transmit embeddings instead of model parameters to reduce the number of transmission parameter. UAVs update their local models using embeddings generated by other UAVs, which also enables UAVs with diverse architectures to participate in training. Moreover, our framework incorporates a filtering mechanism to remove malicious embeddings, ensuring resilience against adversities in UAV networks. Extensive experiments on various datasets validate the effectiveness and practical deployment potential of our framework.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100173"},"PeriodicalIF":14.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned aerial vehicles (UAVs) are increasingly crucial across various fields. There is a growing interest in using federated learning (FL) methods to enhance the efficiency of UAV operations. Nevertheless, incumbent methods remain encumbered by significant drawbacks, including high energy consumption from extensive parameter exchanges, the imperative for homogeneous networks, and sensitivity to single-point failures. These difficulties are compounded by the unreliable nature of communication channels and the current inability to effectively manage the diversity of UAV models, highlighting the imperative for more resilient and adaptable FL solutions. To address these issues, we propose an efficient and robust decentralized FL framework for heterogeneous UAV networks. Our framework first leverages the knowledge distillation where UAVs transmit embeddings instead of model parameters to reduce the number of transmission parameter. UAVs update their local models using embeddings generated by other UAVs, which also enables UAVs with diverse architectures to participate in training. Moreover, our framework incorporates a filtering mechanism to remove malicious embeddings, ensuring resilience against adversities in UAV networks. Extensive experiments on various datasets validate the effectiveness and practical deployment potential of our framework.
DFUN-KDF:基于知识蒸馏和过滤的高效鲁棒的去中心化无人机网络联邦框架
无人驾驶飞行器(uav)在各个领域越来越重要。使用联邦学习(FL)方法来提高无人机操作效率的兴趣越来越大。然而,现有的方法仍然存在明显的缺点,包括大量参数交换带来的高能耗、同质网络的必要性以及对单点故障的敏感性。这些困难由于通信渠道的不可靠性质和目前无法有效管理无人机模型的多样性而复杂化,突出了更具弹性和适应性的FL解决方案的必要性。为了解决这些问题,我们提出了一个高效、鲁棒的异构无人机网络分散FL框架。我们的框架首先利用无人机传输嵌入而不是模型参数的知识蒸馏来减少传输参数的数量。无人机使用其他无人机生成的嵌入来更新其本地模型,这也使具有不同架构的无人机能够参与训练。此外,我们的框架结合了一种过滤机制来去除恶意嵌入,确保无人机网络在逆境中的弹性。在各种数据集上的大量实验验证了我们的框架的有效性和实际部署潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信