EinsteinNet and state-of-the-art ML models for android-based orange classification: Integration, evaluation, and deployment

IF 5.7 Q1 AGRICULTURAL ENGINEERING
Ashif Ahmed Shuvo, Wahada Jinnat Oishy Bhuian, Afzal Rahman, Abdullah Iqbal
{"title":"EinsteinNet and state-of-the-art ML models for android-based orange classification: Integration, evaluation, and deployment","authors":"Ashif Ahmed Shuvo,&nbsp;Wahada Jinnat Oishy Bhuian,&nbsp;Afzal Rahman,&nbsp;Abdullah Iqbal","doi":"10.1016/j.atech.2025.101072","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of on-device machine learning (ML) into mobile platforms has the potential to enable intelligent, real-time diagnostics in agricultural settings. This study presents EinsteinNet, a lightweight convolutional neural network (CNN) optimized for offline orange quality classification on Android devices. A custom dataset of 15,000 annotated images across five quality categories—fresh, rotten, green, canker-affected, and black-spotted—was used to train and compare EinsteinNet against four established architectures (ResNet50, DenseNet121, MobileNetV2, NASNetMobile) and a no-code Google Teachable Machine baseline. EinsteinNet achieved 99.6 % test accuracy with a compact model size (254 KB), but incurred higher inference latency (∼1118 ms) relative to other models. All networks were converted to TensorFlow Lite (TFLite) format and integrated into an Android application with full offline inference capabilities. Empirical evaluation on a Google Pixel 6 showed that while custom CNNs offer strong classification performance and deployment efficiency, optimizing for real-time responsiveness remains critical. Power consumption metrics collected via Android Profiler revealed critical trade-offs among inference accuracy, latency, and energy usage, underscoring the balance required in deploying edge AI models for precision agriculture.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"12 ","pages":"Article 101072"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525003053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of on-device machine learning (ML) into mobile platforms has the potential to enable intelligent, real-time diagnostics in agricultural settings. This study presents EinsteinNet, a lightweight convolutional neural network (CNN) optimized for offline orange quality classification on Android devices. A custom dataset of 15,000 annotated images across five quality categories—fresh, rotten, green, canker-affected, and black-spotted—was used to train and compare EinsteinNet against four established architectures (ResNet50, DenseNet121, MobileNetV2, NASNetMobile) and a no-code Google Teachable Machine baseline. EinsteinNet achieved 99.6 % test accuracy with a compact model size (254 KB), but incurred higher inference latency (∼1118 ms) relative to other models. All networks were converted to TensorFlow Lite (TFLite) format and integrated into an Android application with full offline inference capabilities. Empirical evaluation on a Google Pixel 6 showed that while custom CNNs offer strong classification performance and deployment efficiency, optimizing for real-time responsiveness remains critical. Power consumption metrics collected via Android Profiler revealed critical trade-offs among inference accuracy, latency, and energy usage, underscoring the balance required in deploying edge AI models for precision agriculture.
用于基于android的橙色分类的einstein和最先进的ML模型:集成、评估和部署
将设备上机器学习(ML)集成到移动平台中,有可能在农业环境中实现智能、实时诊断。本研究提出了EinsteinNet,这是一个轻量级卷积神经网络(CNN),针对Android设备上的离线橙色质量分类进行了优化。一个包含15000张注释图像的自定义数据集,分为五个质量类别——新鲜的、腐烂的、绿色的、溃疡病影响的和黑斑的——用于训练和比较EinsteinNet与四个已建立的架构(ResNet50、DenseNet121、MobileNetV2、NASNetMobile)和一个无代码的谷歌可教机器基线。EinsteinNet在紧凑的模型大小(254 KB)下实现了99.6%的测试准确率,但相对于其他模型产生了更高的推理延迟(~ 1118 ms)。所有网络都转换为TensorFlow Lite (TFLite)格式,并集成到具有完整离线推理功能的Android应用程序中。在谷歌Pixel 6上的经验评估表明,尽管自定义cnn提供了强大的分类性能和部署效率,但优化实时响应仍然至关重要。通过Android Profiler收集的功耗指标揭示了推理精度、延迟和能源使用之间的关键权衡,强调了为精准农业部署边缘人工智能模型所需的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信