Two–stage multimodal 3D point localization framework for automatic grape harvesting

IF 5.7 Q1 AGRICULTURAL ENGINEERING
Qian Shen , Dayu Xu , Tianyu Guo , Xiaobo Mao , Fang Xia
{"title":"Two–stage multimodal 3D point localization framework for automatic grape harvesting","authors":"Qian Shen ,&nbsp;Dayu Xu ,&nbsp;Tianyu Guo ,&nbsp;Xiaobo Mao ,&nbsp;Fang Xia","doi":"10.1016/j.atech.2025.101062","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a lightweight Two–Stage multimodal 3D point localization framework for automated grape harvesting, addressing the challenge of precise 3D harvesting point localization. Unlike traditional methods, it employs a Two–Stage multimodal fusion framework, linking RGB and depth images. In the first–stage, pedicels in RGB images are segmented to generate masks. To tackle missing depth information and outliers, an Adaptive Percentile Filtering and Irregular Group-Based Completion (APF–IGBC) algorithm is proposed, leveraging depth distribution patterns and morphological features of grape pedicels. Guided by the mask, APF–IGBC efficiently filters and complements depth information. In the second stage, semantic features from the mask are integrated into the depth image via the Inward Shrinkage Method (ISM) for pose estimation, extracting three key points on pedicels for precise 3D localization. The framework enhances depth restoration and pose estimation accuracy through multimodal fusion. To address multi-scale pedicel challenges, Shared Self–learning YOLO (SSL–YOLO) is introduced, utilizing a Shared Self–learning Head (SSL–Head) for cross-scale information flow. SSL–YOLO achieves 103.9 FPS (9.8 GFLOPs, 2.7M Params) in instance segmentation and 118.8 FPS (6.1 GFLOPs, 2.6M Params) in pose estimation, demonstrating lightweight efficiency, with AP@50 scores of 99.1% and 99.5%, respectively. In comprehensive experiments on a self-constructed grape dataset, the framework achieves a P of 99.2% and a R of 99.2% for 3D harvesting point localization within 600 mm. It has a computational cost of 15.9 GFLOPs and 5.3M Params, running at 100.6 FPS on a GPU and 27.6 FPS on a CPU, showcasing high accuracy and practicality.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"12 ","pages":"Article 101062"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525002953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a lightweight Two–Stage multimodal 3D point localization framework for automated grape harvesting, addressing the challenge of precise 3D harvesting point localization. Unlike traditional methods, it employs a Two–Stage multimodal fusion framework, linking RGB and depth images. In the first–stage, pedicels in RGB images are segmented to generate masks. To tackle missing depth information and outliers, an Adaptive Percentile Filtering and Irregular Group-Based Completion (APF–IGBC) algorithm is proposed, leveraging depth distribution patterns and morphological features of grape pedicels. Guided by the mask, APF–IGBC efficiently filters and complements depth information. In the second stage, semantic features from the mask are integrated into the depth image via the Inward Shrinkage Method (ISM) for pose estimation, extracting three key points on pedicels for precise 3D localization. The framework enhances depth restoration and pose estimation accuracy through multimodal fusion. To address multi-scale pedicel challenges, Shared Self–learning YOLO (SSL–YOLO) is introduced, utilizing a Shared Self–learning Head (SSL–Head) for cross-scale information flow. SSL–YOLO achieves 103.9 FPS (9.8 GFLOPs, 2.7M Params) in instance segmentation and 118.8 FPS (6.1 GFLOPs, 2.6M Params) in pose estimation, demonstrating lightweight efficiency, with AP@50 scores of 99.1% and 99.5%, respectively. In comprehensive experiments on a self-constructed grape dataset, the framework achieves a P of 99.2% and a R of 99.2% for 3D harvesting point localization within 600 mm. It has a computational cost of 15.9 GFLOPs and 5.3M Params, running at 100.6 FPS on a GPU and 27.6 FPS on a CPU, showcasing high accuracy and practicality.
葡萄自动收获的两阶段多模态三维点定位框架
本研究提出了一种轻量级的两阶段多模态葡萄自动采收三维点定位框架,解决了精确三维采收点定位的挑战。与传统方法不同,该方法采用两阶段多模态融合框架,将RGB和深度图像连接起来。第一阶段,对RGB图像中的花梗进行分割,生成蒙版。为了解决深度信息缺失和异常值问题,利用葡萄蒂的深度分布模式和形态特征,提出了一种自适应百分位滤波和不规则组基补全(APF-IGBC)算法。在掩模的引导下,APF-IGBC有效地过滤和补充深度信息。在第二阶段,通过向内收缩方法(ISM)将蒙版的语义特征整合到深度图像中进行姿态估计,提取椎弓根上的三个关键点进行精确的3D定位。该框架通过多模态融合提高了深度恢复和姿态估计精度。为了解决多尺度的问题,引入了共享自学习YOLO (SSL-YOLO),利用共享自学习头(SSL-Head)进行跨尺度的信息流。SSL-YOLO在实例分割方面达到103.9 FPS (9.8 GFLOPs, 2.7M Params),在姿态估计方面达到118.8 FPS (6.1 GFLOPs, 2.6M Params),表现出轻量级的效率,AP@50得分分别为99.1%和99.5%。在自构建葡萄数据集的综合实验中,该框架对600 mm范围内的三维采集点定位的P值为99.2%,R值为99.2%。它的计算成本为15.9 GFLOPs和5.3M Params,在GPU上运行100.6 FPS,在CPU上运行27.6 FPS,显示出高精度和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信