Proportional feedback and optimal control of perturbed sine-Gordon kink solitons

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Mordecai Opoku Ohemeng , Joseph Ackora-Prah , Benedict Barnes , Ishmael Takyi
{"title":"Proportional feedback and optimal control of perturbed sine-Gordon kink solitons","authors":"Mordecai Opoku Ohemeng ,&nbsp;Joseph Ackora-Prah ,&nbsp;Benedict Barnes ,&nbsp;Ishmael Takyi","doi":"10.1016/j.chaos.2025.116645","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the stabilization of kink soliton solutions in the sine-Gordon equation against destabilizing perturbations. We compared two distinct control strategies: proportional feedback control, which offers computational efficiency, and an optimal control approach based on cost functional minimization, which balances control effort against tracking error. Using finite difference discretization and gradient descent optimization in our numerical simulations, we evaluated the effectiveness of each method. While both approaches maintain the topological integrity of the soliton, the optimal control method achieved superior perturbation suppression by selectively targeting unstable modes without disrupting soliton propagation. Additionally, we provided a quantitative assessment of the trade-offs based on stabilization time, energy consumption, and maximum deviation for each method. Our findings advanced previous research by establishing a framework for selecting control strategies based on precision requirements and available computational resources.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116645"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925006587","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the stabilization of kink soliton solutions in the sine-Gordon equation against destabilizing perturbations. We compared two distinct control strategies: proportional feedback control, which offers computational efficiency, and an optimal control approach based on cost functional minimization, which balances control effort against tracking error. Using finite difference discretization and gradient descent optimization in our numerical simulations, we evaluated the effectiveness of each method. While both approaches maintain the topological integrity of the soliton, the optimal control method achieved superior perturbation suppression by selectively targeting unstable modes without disrupting soliton propagation. Additionally, we provided a quantitative assessment of the trade-offs based on stabilization time, energy consumption, and maximum deviation for each method. Our findings advanced previous research by establishing a framework for selecting control strategies based on precision requirements and available computational resources.
摄动正弦戈登扭结孤子的比例反馈与最优控制
本文研究了正弦戈登方程中扭结孤子解在不稳定扰动下的稳定性。我们比较了两种不同的控制策略:提供计算效率的比例反馈控制和基于成本函数最小化的最优控制方法,该方法平衡了控制工作量和跟踪误差。在数值模拟中,我们使用有限差分离散化和梯度下降优化来评估每种方法的有效性。虽然这两种方法都保持了孤子的拓扑完整性,但最优控制方法通过选择性地针对不稳定模式而不干扰孤子的传播,实现了更好的微扰抑制。此外,我们还对每种方法的稳定时间、能耗和最大偏差进行了定量评估。我们的发现通过建立一个基于精度要求和可用计算资源的选择控制策略的框架,推进了先前的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信