{"title":"From continuous pre-training to alignment: A comprehensive toolkit for large language models in federated learning","authors":"Zhuo Zhang , Yukun Zhang , Guanzhong Chen , Lizhen Qu , Xun Zhou , Hui Wang , Zenglin Xu","doi":"10.1016/j.neucom.2025.130572","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid success of Large Language Models (LLMs) has unlocked vast potential for AI applications in privacy-sensitive domains. However, the traditional centralized training of LLMs poses significant challenges due to privacy concerns regarding collecting sensitive data from diverse sources. This paper offers a promising and privacy-enhancing solution for LLMs: collaboratively training LLMs via Federated Learning (FL) across multiple clients, eliminating the need for raw data transmission. To this end, we present F4LLM, a new and comprehensive toolbox that supports the entire Federated LLM pipeline, from Continuous pre-training to alignment and LLM evaluation. F4LLM employs gRPC as the communication protocol to support various widely-used FL algorithms, ensuring efficient development and benchmarking in geo-distributed FL environments. Moreover, F4LLM offers both open-form and closed-form evaluation options via the efficient inference tool vLLM. The source code and documentation are at <span><span>here</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"647 ","pages":"Article 130572"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225012445","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid success of Large Language Models (LLMs) has unlocked vast potential for AI applications in privacy-sensitive domains. However, the traditional centralized training of LLMs poses significant challenges due to privacy concerns regarding collecting sensitive data from diverse sources. This paper offers a promising and privacy-enhancing solution for LLMs: collaboratively training LLMs via Federated Learning (FL) across multiple clients, eliminating the need for raw data transmission. To this end, we present F4LLM, a new and comprehensive toolbox that supports the entire Federated LLM pipeline, from Continuous pre-training to alignment and LLM evaluation. F4LLM employs gRPC as the communication protocol to support various widely-used FL algorithms, ensuring efficient development and benchmarking in geo-distributed FL environments. Moreover, F4LLM offers both open-form and closed-form evaluation options via the efficient inference tool vLLM. The source code and documentation are at here.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.