From continuous pre-training to alignment: A comprehensive toolkit for large language models in federated learning

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhuo Zhang , Yukun Zhang , Guanzhong Chen , Lizhen Qu , Xun Zhou , Hui Wang , Zenglin Xu
{"title":"From continuous pre-training to alignment: A comprehensive toolkit for large language models in federated learning","authors":"Zhuo Zhang ,&nbsp;Yukun Zhang ,&nbsp;Guanzhong Chen ,&nbsp;Lizhen Qu ,&nbsp;Xun Zhou ,&nbsp;Hui Wang ,&nbsp;Zenglin Xu","doi":"10.1016/j.neucom.2025.130572","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid success of Large Language Models (LLMs) has unlocked vast potential for AI applications in privacy-sensitive domains. However, the traditional centralized training of LLMs poses significant challenges due to privacy concerns regarding collecting sensitive data from diverse sources. This paper offers a promising and privacy-enhancing solution for LLMs: collaboratively training LLMs via Federated Learning (FL) across multiple clients, eliminating the need for raw data transmission. To this end, we present F4LLM, a new and comprehensive toolbox that supports the entire Federated LLM pipeline, from Continuous pre-training to alignment and LLM evaluation. F4LLM employs gRPC as the communication protocol to support various widely-used FL algorithms, ensuring efficient development and benchmarking in geo-distributed FL environments. Moreover, F4LLM offers both open-form and closed-form evaluation options via the efficient inference tool vLLM. The source code and documentation are at <span><span>here</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"647 ","pages":"Article 130572"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225012445","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid success of Large Language Models (LLMs) has unlocked vast potential for AI applications in privacy-sensitive domains. However, the traditional centralized training of LLMs poses significant challenges due to privacy concerns regarding collecting sensitive data from diverse sources. This paper offers a promising and privacy-enhancing solution for LLMs: collaboratively training LLMs via Federated Learning (FL) across multiple clients, eliminating the need for raw data transmission. To this end, we present F4LLM, a new and comprehensive toolbox that supports the entire Federated LLM pipeline, from Continuous pre-training to alignment and LLM evaluation. F4LLM employs gRPC as the communication protocol to support various widely-used FL algorithms, ensuring efficient development and benchmarking in geo-distributed FL environments. Moreover, F4LLM offers both open-form and closed-form evaluation options via the efficient inference tool vLLM. The source code and documentation are at here.
从连续预训练到对齐:联邦学习中大型语言模型的综合工具包
大型语言模型(llm)的快速成功为人工智能在隐私敏感领域的应用释放了巨大的潜力。然而,由于从不同来源收集敏感数据的隐私问题,传统的法学硕士集中培训面临着重大挑战。本文为法学硕士提供了一个有前途的、增强隐私的解决方案:通过跨多个客户端的联邦学习(FL)协作训练法学硕士,消除了对原始数据传输的需求。为此,我们提出了F4LLM,这是一个新的综合工具箱,支持整个Federated LLM管道,从连续预训练到对齐和LLM评估。F4LLM采用gRPC作为通信协议,支持各种广泛使用的FL算法,确保在地理分布式FL环境下的高效开发和基准测试。此外,F4LLM通过高效的推理工具vLLM提供开放形式和封闭形式的评估选项。源代码和文档在这里。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信