Room-Temperature Strong Coupling of Hexane-Dispersed Colloidal CdSe Nanoplatelets in a Microcavity Composed of Two Bragg Reflectors

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Masaru Oda*, Kazuaki Yamato, Jyunya Egashira and Hisao Kondo, 
{"title":"Room-Temperature Strong Coupling of Hexane-Dispersed Colloidal CdSe Nanoplatelets in a Microcavity Composed of Two Bragg Reflectors","authors":"Masaru Oda*,&nbsp;Kazuaki Yamato,&nbsp;Jyunya Egashira and Hisao Kondo,&nbsp;","doi":"10.1021/acs.jpcc.5c0268510.1021/acs.jpcc.5c02685","DOIUrl":null,"url":null,"abstract":"<p >CdSe nanoplatelets (NPLs) are suitable for exploring strong light–matter coupling in semiconductor nanocrystal systems due to their giant oscillator strength and large exciton binding energy. Here, we report the facile fabrication and optical characterization of a λ/2 planar microcavity, which consists of two distributed Bragg reflectors with a hexane layer containing concentrated colloidal CdSe NPLs. Using a hexane solution layer instead of the typically used dried active layers results in a thin and flat layer, even under dense NPL conditions, almost without stressing or charging the surface of the NPLs. Reflectance spectra showed that strong light-matter coupling can be realized at room temperature and that the vacuum Rabi splitting energy is 53.5 meV. Intense photoluminescence (PL) emerges at the lower polariton branch, 25.1 meV (=<i>E</i><sub>LO</sub>: longitudinal optical (LO) phonon energy) below the energy of the dark states, i.e., the exciton reservoir, indicating that relaxation from the exciton reservoir occurs efficiently in this microcavity due to LO-phonon-assisted relaxation. We describe the reflectance and PL properties using a model in which a cavity photon couples to a one-exciton state delocalized over nonuniformly oriented NPLs. This model contributes to an intuitive, quantitative understanding of the microcavity containing colloidal NPLs.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 23","pages":"10591–10600 10591–10600"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.5c02685","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c02685","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

CdSe nanoplatelets (NPLs) are suitable for exploring strong light–matter coupling in semiconductor nanocrystal systems due to their giant oscillator strength and large exciton binding energy. Here, we report the facile fabrication and optical characterization of a λ/2 planar microcavity, which consists of two distributed Bragg reflectors with a hexane layer containing concentrated colloidal CdSe NPLs. Using a hexane solution layer instead of the typically used dried active layers results in a thin and flat layer, even under dense NPL conditions, almost without stressing or charging the surface of the NPLs. Reflectance spectra showed that strong light-matter coupling can be realized at room temperature and that the vacuum Rabi splitting energy is 53.5 meV. Intense photoluminescence (PL) emerges at the lower polariton branch, 25.1 meV (=ELO: longitudinal optical (LO) phonon energy) below the energy of the dark states, i.e., the exciton reservoir, indicating that relaxation from the exciton reservoir occurs efficiently in this microcavity due to LO-phonon-assisted relaxation. We describe the reflectance and PL properties using a model in which a cavity photon couples to a one-exciton state delocalized over nonuniformly oriented NPLs. This model contributes to an intuitive, quantitative understanding of the microcavity containing colloidal NPLs.

由两个Bragg反射器组成的微腔中己烷分散胶体CdSe纳米片的室温强耦合
CdSe纳米薄片(NPLs)由于具有巨大的振子强度和较大的激子结合能,适合于探索半导体纳米晶体系统中的强光物质耦合。在这里,我们报道了一个λ/2平面微腔的制备和光学特性,该微腔由两个分布的布拉格反射器和一个含有浓缩胶体CdSe NPLs的己烷层组成。使用己烷溶液层代替通常使用的干燥活性层,即使在密集的不良贷款条件下,也会产生薄而平坦的层,几乎不会对不良贷款的表面施加压力或充电。反射光谱表明,该材料在室温下可实现强光-物质耦合,真空拉比分裂能为53.5 meV。强光致发光(PL)出现在低极子分支,25.1 meV (=ELO:纵向光学(LO)声子能量)低于暗态(即激子库)的能量,表明由于LO声子辅助弛豫,激子库的弛豫在该微腔中有效发生。我们使用一个模型来描述反射率和PL特性,在这个模型中,一个腔光子耦合到非均匀取向的npl上的一个离域激子态。该模型有助于直观、定量地了解含有胶体不良物质的微腔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信