Bruno Valan, Anusha Prakash, William Ratliff, Michael Gao, Srikanth Muthya, Ajit Thomas, Jennifer L. Eaton, Matt Gardner, Marshall Nichols, Mike Revoir, Dustin Tart, Cara O’Brien, Manesh Patel, Suresh Balu, Mark Sendak
{"title":"Evaluating sepsis watch generalizability through multisite external validation of a sepsis machine learning model","authors":"Bruno Valan, Anusha Prakash, William Ratliff, Michael Gao, Srikanth Muthya, Ajit Thomas, Jennifer L. Eaton, Matt Gardner, Marshall Nichols, Mike Revoir, Dustin Tart, Cara O’Brien, Manesh Patel, Suresh Balu, Mark Sendak","doi":"10.1038/s41746-025-01664-5","DOIUrl":null,"url":null,"abstract":"<p>Sepsis accounts for a substantial portion of global deaths and healthcare costs. The objective of this reproducibility study is to validate Duke Health’s Sepsis Watch ML model, in a new community healthcare setting and assess its performance and clinical utility in early sepsis detection at Summa Health’s emergency departments. The study analyzed the model’s ability to predict sepsis using a combination of static and dynamic patient data using 205,005 encounters between 2020 and 2021 from 101,584 unique patients. 54.7% (<i>n</i> = 112,223) patients were female and the average age was 50 (IQR [38,71]). The AUROC ranged from 0.906 to 0.960, and the AUPRC ranged from 0.177 to 0.252 across the four sites. Ultimately, the reproducibility of the Sepsis Watch model in a community health system setting confirmed its strong and robust performance and portability across different geographical and demographic contexts with little variation.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"11 1","pages":""},"PeriodicalIF":15.1000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01664-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis accounts for a substantial portion of global deaths and healthcare costs. The objective of this reproducibility study is to validate Duke Health’s Sepsis Watch ML model, in a new community healthcare setting and assess its performance and clinical utility in early sepsis detection at Summa Health’s emergency departments. The study analyzed the model’s ability to predict sepsis using a combination of static and dynamic patient data using 205,005 encounters between 2020 and 2021 from 101,584 unique patients. 54.7% (n = 112,223) patients were female and the average age was 50 (IQR [38,71]). The AUROC ranged from 0.906 to 0.960, and the AUPRC ranged from 0.177 to 0.252 across the four sites. Ultimately, the reproducibility of the Sepsis Watch model in a community health system setting confirmed its strong and robust performance and portability across different geographical and demographic contexts with little variation.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.