Fault-Tolerant Logical Measurements via Homological Measurement

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Benjamin Ide, Manoj G. Gowda, Priya J. Nadkarni, Guillaume Dauphinais
{"title":"Fault-Tolerant Logical Measurements via Homological Measurement","authors":"Benjamin Ide, Manoj G. Gowda, Priya J. Nadkarni, Guillaume Dauphinais","doi":"10.1103/physrevx.15.021088","DOIUrl":null,"url":null,"abstract":"We introduce homological measurement, a framework for measuring the logical Pauli operators encoded in Calderbank-Shor-Steane stabilizer codes. The framework is based on the algebraic description of such codes as chain complexes. Protocols such as lattice surgery and some of its recent generalizations are shown to be special cases of homological measurement. Using this framework, we develop a specific protocol called edge expanded homological measurement for fault-tolerant measurement of arbitrary logical Pauli operators of general quantum low density parity-check codes, requiring a number of ancillary qubits growing only linearly with the weight of the logical operator measured, and guarantee that the distance of the code is preserved. We further benchmark our protocol numerically in a photonic architecture based on Gottesman-Kitaev-Preskill qubits, showing that the logical error rates of various codes are on par with other methods requiring more ancilla qubits. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"40 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021088","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce homological measurement, a framework for measuring the logical Pauli operators encoded in Calderbank-Shor-Steane stabilizer codes. The framework is based on the algebraic description of such codes as chain complexes. Protocols such as lattice surgery and some of its recent generalizations are shown to be special cases of homological measurement. Using this framework, we develop a specific protocol called edge expanded homological measurement for fault-tolerant measurement of arbitrary logical Pauli operators of general quantum low density parity-check codes, requiring a number of ancillary qubits growing only linearly with the weight of the logical operator measured, and guarantee that the distance of the code is preserved. We further benchmark our protocol numerically in a photonic architecture based on Gottesman-Kitaev-Preskill qubits, showing that the logical error rates of various codes are on par with other methods requiring more ancilla qubits. Published by the American Physical Society 2025
通过同调度量实现的容错逻辑度量
介绍了一种测量编码在calderbank - shorr - steane稳定码中的逻辑泡利算子的框架——同调测量。该框架基于链配合物等代码的代数描述。晶格手术等方案及其最近的一些推广被证明是同调测量的特殊情况。在此框架下,我们开发了一种称为边缘扩展同调测量的特定协议,用于一般量子低密度奇偶校验码的任意逻辑泡利算子的容错测量,该协议要求辅助量子比特的数量仅随所测量逻辑算子的权重线性增长,并保证码的距离保持不变。我们进一步在基于Gottesman-Kitaev-Preskill量子比特的光子架构中对我们的协议进行数值基准测试,表明各种代码的逻辑错误率与其他需要更多辅助量子比特的方法相当。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信