Topological Machine Learning for Protein-Nucleic Acid Binding Affinity Changes Upon Mutation.

ArXiv Pub Date : 2025-05-28
Xiang Liu, Junjie Wee, Guo-Wei Wei
{"title":"Topological Machine Learning for Protein-Nucleic Acid Binding Affinity Changes Upon Mutation.","authors":"Xiang Liu, Junjie Wee, Guo-Wei Wei","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how protein mutations affect protein-nucleic acid binding is critical for unraveling disease mechanisms and advancing therapies. Current experimental approaches are laborious, and computational methods remain limited in accuracy. To address this challenge, we propose a novel topological machine learning model (TopoML) combining persistent Laplacian (from topological data analysis) with multi-perspective features: physicochemical properties, topological structures, and protein Transformer-derived sequence embeddings. This integrative framework captures robust representations of protein-nucleic acid binding interactions. To validate the proposed method, we employ two datasets, a protein-DNA dataset with 596 single-point amino acid mutations, and a protein-RNA dataset with 710 single-point amino acid mutations. We show that the proposed TopoML model outperforms state-of-the-art methods in predicting mutation-induced binding affinity changes for protein-DNA and protein-RNA complexes.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12148091/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how protein mutations affect protein-nucleic acid binding is critical for unraveling disease mechanisms and advancing therapies. Current experimental approaches are laborious, and computational methods remain limited in accuracy. To address this challenge, we propose a novel topological machine learning model (TopoML) combining persistent Laplacian (from topological data analysis) with multi-perspective features: physicochemical properties, topological structures, and protein Transformer-derived sequence embeddings. This integrative framework captures robust representations of protein-nucleic acid binding interactions. To validate the proposed method, we employ two datasets, a protein-DNA dataset with 596 single-point amino acid mutations, and a protein-RNA dataset with 710 single-point amino acid mutations. We show that the proposed TopoML model outperforms state-of-the-art methods in predicting mutation-induced binding affinity changes for protein-DNA and protein-RNA complexes.

基于拓扑机器学习的蛋白质核酸结合亲和力突变研究。
了解蛋白质突变如何影响蛋白质核酸结合对于揭示疾病机制和推进治疗至关重要。目前的实验方法是费力的,计算方法的准确性仍然有限。为了应对这一挑战,我们提出了一种新的拓扑机器学习模型(TopoML),该模型将持久性拉普拉斯(来自拓扑数据分析)与多视角特征(物理化学性质、拓扑结构和蛋白质transformer衍生的序列嵌入)相结合。这个综合框架捕获了蛋白质-核酸结合相互作用的稳健表征。为了验证所提出的方法,我们使用了两个数据集,一个是含有596个单点氨基酸突变的蛋白质- dna数据集,另一个是含有710个单点氨基酸突变的蛋白质- rna数据集。我们表明,所提出的TopoML模型在预测突变诱导的蛋白质- dna和蛋白质- rna复合物结合亲和力变化方面优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信