Optimization and variability can coexist.

ArXiv Pub Date : 2025-05-29
Marianne Bauer, William Bialek, Chase Goddard, Caroline M Holmes, Kamesh Krishnamurthy, Stephanie E Palmer, Rich Pang, David J Schwab, Lee Susman
{"title":"Optimization and variability can coexist.","authors":"Marianne Bauer, William Bialek, Chase Goddard, Caroline M Holmes, Kamesh Krishnamurthy, Stephanie E Palmer, Rich Pang, David J Schwab, Lee Susman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Many biological systems perform close to their physical limits, but promoting this optimality to a general principle seems to require implausibly fine tuning of parameters. Using examples from a wide range of systems, we show that this intuition is wrong. Near an optimum, functional performance depends on parameters in a \"sloppy\" way, with some combinations of parameters being only weakly constrained. Absent any other constraints, this <i>predicts</i> that we should observe widely varying parameters, and we make this precise: the entropy in parameter space can be extensive even if performance on average is very close to optimal. This removes a major objection to optimization as a general principle, and rationalizes the observed variability.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12148085/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many biological systems perform close to their physical limits, but promoting this optimality to a general principle seems to require implausibly fine tuning of parameters. Using examples from a wide range of systems, we show that this intuition is wrong. Near an optimum, functional performance depends on parameters in a "sloppy" way, with some combinations of parameters being only weakly constrained. Absent any other constraints, this predicts that we should observe widely varying parameters, and we make this precise: the entropy in parameter space can be extensive even if performance on average is very close to optimal. This removes a major objection to optimization as a general principle, and rationalizes the observed variability.

优化和可变性可以共存。
许多生物系统的性能都接近于它们的物理极限,但要将这种最优性提升到一般原则,似乎需要对参数进行难以置信的微调。通过使用来自广泛系统的例子,我们表明这种直觉是错误的。在接近最优的情况下,函数性能以一种“草率”的方式依赖于参数,一些参数组合仅受到弱约束。在没有任何其他约束的情况下,这预示着我们应该观察到广泛变化的参数,并且我们使其精确:参数空间中的熵可以是广泛的,即使平均性能非常接近最优。这消除了将优化作为一般原则的主要反对意见,并使观察到的可变性合理化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信