{"title":"Analysis of Combinatorial Cohesin Subunit Gene Deletions in Budding Yeast.","authors":"Grace Duke, Robert V Skibbens","doi":"10.1093/genetics/iyaf107","DOIUrl":null,"url":null,"abstract":"<p><p>Throughout the cell cycle, DNA molecules convert between hierarchical intramolecular (cis) and intermolecular (trans) associations. Cohesin ATPase complexes produce both types of DNA associations which collectively are required for sister chromatid segregation, chromatin condensation, genomic architecture, gene transcription, and DNA repair. The mechanisms that regulate cohesin cis- and trans-activities, however, remain controversial. A popular model is that a regulatory complex (Pds5, Irr1/Scc3, and Rad61) sits atop a core ring-like complex (Mcd1/Scc1, Smc1, and Smc3), the latter of which exhibits the inherent ATPase activities responsible for producing cis-and trans-DNA conformations. Additional proteins transiently interact with cohesins to promote cohesin deposition onto DNA (Scc2 and Scc4) or stabilize cohesin-DNA binding (Eco1/Ctf7). Of these nine components, only RAD61 is non-essential. Recent findings, however, identified pairs of suppressor mutations that support the viability of cells individually deleted for either PDS5 or ECO1/CTF7 (herein ECO1). Intriguingly, CLN2 deletion is common in both suppressor pairs, suggesting that combined suppressor mutations may support the viability of cells co-deleted for both ECO1 and PDS5. These results further suggest that the addition of other suppressor mutations (such as ELG1 and RAD61) may support the viability of cells deleted of all auxiliary subunits - including IRR1/SCC3 (herein SCC3). Here, we test these predictions and report on novel gene deletion combinations required for cell cycle progression and cell viability.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf107","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Throughout the cell cycle, DNA molecules convert between hierarchical intramolecular (cis) and intermolecular (trans) associations. Cohesin ATPase complexes produce both types of DNA associations which collectively are required for sister chromatid segregation, chromatin condensation, genomic architecture, gene transcription, and DNA repair. The mechanisms that regulate cohesin cis- and trans-activities, however, remain controversial. A popular model is that a regulatory complex (Pds5, Irr1/Scc3, and Rad61) sits atop a core ring-like complex (Mcd1/Scc1, Smc1, and Smc3), the latter of which exhibits the inherent ATPase activities responsible for producing cis-and trans-DNA conformations. Additional proteins transiently interact with cohesins to promote cohesin deposition onto DNA (Scc2 and Scc4) or stabilize cohesin-DNA binding (Eco1/Ctf7). Of these nine components, only RAD61 is non-essential. Recent findings, however, identified pairs of suppressor mutations that support the viability of cells individually deleted for either PDS5 or ECO1/CTF7 (herein ECO1). Intriguingly, CLN2 deletion is common in both suppressor pairs, suggesting that combined suppressor mutations may support the viability of cells co-deleted for both ECO1 and PDS5. These results further suggest that the addition of other suppressor mutations (such as ELG1 and RAD61) may support the viability of cells deleted of all auxiliary subunits - including IRR1/SCC3 (herein SCC3). Here, we test these predictions and report on novel gene deletion combinations required for cell cycle progression and cell viability.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.