Negative Control Outcome Adjustment in Early-Phase Randomized Trials: Estimating Vaccine Effects on Immune Responses in HIV Exposed Uninfected Infants.
IF 1.8 4区 医学Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Ethan Ashby, Bo Zhang, Genevieve G Fouda, Youyi Fong, Holly Janes
{"title":"Negative Control Outcome Adjustment in Early-Phase Randomized Trials: Estimating Vaccine Effects on Immune Responses in HIV Exposed Uninfected Infants.","authors":"Ethan Ashby, Bo Zhang, Genevieve G Fouda, Youyi Fong, Holly Janes","doi":"10.1002/sim.70142","DOIUrl":null,"url":null,"abstract":"<p><p>Adjustment for prognostic baseline variables can reduce bias due to covariate imbalance and increase efficiency in randomized trials. While the use of covariate adjustment in late-phase trials is justified by favorable large-sample properties, it is seldom used in small, early-phase studies, due to uncertainty in which variables are prognostic and the potential for precision loss, type I error rate inflation, and undercoverage of confidence intervals. To address this problem, we consider adjustment for a valid negative control outcome (NCO), or an auxiliary post-randomization outcome believed to be completely unaffected by treatment but more highly correlated with the primary outcome than baseline covariates. We articulate the assumptions that permit adjustment for NCOs without producing post-randomization selection bias, and describe plausible data-generating models where NCO adjustment can improve upon adjustment for baseline covariates alone. In numerical experiments, we illustrate performance and provide practical recommendations regarding model selection and finite-sample variance corrections. We apply our methods to the reanalysis of two early-phase vaccine trials in HIV exposed uninfected (HEU) infants, where we demonstrate that adjustment for auxiliary post-baseline immunological parameters can enhance the precision of vaccine effect estimates relative to standard approaches that avoid adjustment or adjust for baseline covariates alone.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 13-14","pages":"e70142"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70142","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adjustment for prognostic baseline variables can reduce bias due to covariate imbalance and increase efficiency in randomized trials. While the use of covariate adjustment in late-phase trials is justified by favorable large-sample properties, it is seldom used in small, early-phase studies, due to uncertainty in which variables are prognostic and the potential for precision loss, type I error rate inflation, and undercoverage of confidence intervals. To address this problem, we consider adjustment for a valid negative control outcome (NCO), or an auxiliary post-randomization outcome believed to be completely unaffected by treatment but more highly correlated with the primary outcome than baseline covariates. We articulate the assumptions that permit adjustment for NCOs without producing post-randomization selection bias, and describe plausible data-generating models where NCO adjustment can improve upon adjustment for baseline covariates alone. In numerical experiments, we illustrate performance and provide practical recommendations regarding model selection and finite-sample variance corrections. We apply our methods to the reanalysis of two early-phase vaccine trials in HIV exposed uninfected (HEU) infants, where we demonstrate that adjustment for auxiliary post-baseline immunological parameters can enhance the precision of vaccine effect estimates relative to standard approaches that avoid adjustment or adjust for baseline covariates alone.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.