Signalomics for molecular tumor boards and precision oncology of breast and gynecological cancers.

IF 8.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tatiana V Denisenko, Anna E Ivanova, Alexey Koval, Denis N Silachev, Lee Jia, Gennadiy T Sukhikh, Vladimir L Katanaev
{"title":"Signalomics for molecular tumor boards and precision oncology of breast and gynecological cancers.","authors":"Tatiana V Denisenko, Anna E Ivanova, Alexey Koval, Denis N Silachev, Lee Jia, Gennadiy T Sukhikh, Vladimir L Katanaev","doi":"10.1038/s44320-025-00125-1","DOIUrl":null,"url":null,"abstract":"<p><p>Precision oncology led to the establishment and widespread application of molecular tumor boards (MTBs)-multidisciplinary units combining molecular and clinical assessment of individual cancer cases for swift selection of personalized treatments. Whole-exome or gene panel sequencing, combined with transcriptomic, immunohistochemical, and other molecular analyses, often permits dissection of molecular drivers of a tumor and identification of its potential targetable vulnerabilities, instructing clinical oncologists on sometimes unconventional treatment options. However, cancer drivers are often unleashed mutation-independently, especially in breast and gynecological cancers, and deleterious mutations are not always pathogenic. To complement the MTB arsenal, we chart here the molecular toolset we call Signalomics that permits fast and robust assessment of a panel of oncogenic signaling pathways in fresh tumor samples. Using transcriptional reporters introduced in primary tumor cells, this approach identifies the pathways overactivated in a given tumor and validates their sensitivity to targeted therapies, providing actionable insights for personalized treatment strategies. Integration of Signalomics into MTB workflows bridges the gap between molecular profiling and functional pathway analysis, refining clinical treatment decisions and advancing precision oncology.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-025-00125-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Precision oncology led to the establishment and widespread application of molecular tumor boards (MTBs)-multidisciplinary units combining molecular and clinical assessment of individual cancer cases for swift selection of personalized treatments. Whole-exome or gene panel sequencing, combined with transcriptomic, immunohistochemical, and other molecular analyses, often permits dissection of molecular drivers of a tumor and identification of its potential targetable vulnerabilities, instructing clinical oncologists on sometimes unconventional treatment options. However, cancer drivers are often unleashed mutation-independently, especially in breast and gynecological cancers, and deleterious mutations are not always pathogenic. To complement the MTB arsenal, we chart here the molecular toolset we call Signalomics that permits fast and robust assessment of a panel of oncogenic signaling pathways in fresh tumor samples. Using transcriptional reporters introduced in primary tumor cells, this approach identifies the pathways overactivated in a given tumor and validates their sensitivity to targeted therapies, providing actionable insights for personalized treatment strategies. Integration of Signalomics into MTB workflows bridges the gap between molecular profiling and functional pathway analysis, refining clinical treatment decisions and advancing precision oncology.

信号组学用于乳腺癌和妇科肿瘤的分子肿瘤板和精确肿瘤学。
精确肿瘤学导致了分子肿瘤委员会(MTBs)的建立和广泛应用,这是一种多学科单位,结合了个体癌症病例的分子和临床评估,以快速选择个性化治疗。全外显子组或基因面板测序,结合转录组学、免疫组织化学和其他分子分析,通常允许解剖肿瘤的分子驱动因素,并确定其潜在的靶向脆弱性,指导临床肿瘤学家有时选择非常规的治疗方案。然而,癌症驱动因素通常是独立于突变释放的,特别是在乳腺癌和妇科癌症中,有害突变并不总是致病的。为了补充MTB库,我们在这里绘制了我们称为信号组学的分子工具集,它允许对新鲜肿瘤样本中的一组致癌信号通路进行快速和可靠的评估。利用在原发肿瘤细胞中引入的转录报告,该方法确定了给定肿瘤中过度激活的通路,并验证了它们对靶向治疗的敏感性,为个性化治疗策略提供了可行的见解。将信号组学集成到结核分枝杆菌工作流程中,弥合了分子谱分析和功能途径分析之间的差距,改进了临床治疗决策,推进了精准肿瘤学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信