Elisa Marchetto, Hannah Eichhorn, Daniel Gallichan, Julia A Schnabel, Melanie Ganz
{"title":"Agreement of image quality metrics with radiological evaluation in the presence of motion artifacts.","authors":"Elisa Marchetto, Hannah Eichhorn, Daniel Gallichan, Julia A Schnabel, Melanie Ganz","doi":"10.1007/s10334-025-01266-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Reliable image quality assessment is crucial for evaluating new motion correction methods for magnetic resonance imaging. We compare the performance of common reference-based and reference-free image quality metrics on unique datasets with real motion artifacts, and analyze the metrics' robustness to typical pre-processing techniques.</p><p><strong>Materials and methods: </strong>We compared five reference-based and five reference-free metrics on brain data acquired with and without intentional motion (2D and 3D sequences). The metrics were recalculated seven times with varying pre-processing steps. Spearman correlation coefficients were computed to assess the relationship between image quality metrics and radiological evaluation.</p><p><strong>Results: </strong>All reference-based metrics showed strong correlation with observer assessments. Among reference-free metrics, Average Edge Strength offers the most promising results, as it consistently displayed stronger correlations across all sequences compared to the other reference-free metrics. The strongest correlation was achieved with percentile normalization and restricting the metric values to the skull-stripped brain region. In contrast, correlations were weaker when not applying any brain mask and using min-max or no normalization.</p><p><strong>Discussion: </strong>Reference-based metrics reliably correlate with radiological evaluation across different sequences and datasets. Pre-processing significantly influences correlation values. Future research should focus on refining pre-processing techniques and exploring approaches for automated image quality evaluation.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-025-01266-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Reliable image quality assessment is crucial for evaluating new motion correction methods for magnetic resonance imaging. We compare the performance of common reference-based and reference-free image quality metrics on unique datasets with real motion artifacts, and analyze the metrics' robustness to typical pre-processing techniques.
Materials and methods: We compared five reference-based and five reference-free metrics on brain data acquired with and without intentional motion (2D and 3D sequences). The metrics were recalculated seven times with varying pre-processing steps. Spearman correlation coefficients were computed to assess the relationship between image quality metrics and radiological evaluation.
Results: All reference-based metrics showed strong correlation with observer assessments. Among reference-free metrics, Average Edge Strength offers the most promising results, as it consistently displayed stronger correlations across all sequences compared to the other reference-free metrics. The strongest correlation was achieved with percentile normalization and restricting the metric values to the skull-stripped brain region. In contrast, correlations were weaker when not applying any brain mask and using min-max or no normalization.
Discussion: Reference-based metrics reliably correlate with radiological evaluation across different sequences and datasets. Pre-processing significantly influences correlation values. Future research should focus on refining pre-processing techniques and exploring approaches for automated image quality evaluation.
期刊介绍:
MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include:
advances in materials, hardware and software in magnetic resonance technology,
new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine,
study of animal models and intact cells using magnetic resonance,
reports of clinical trials on humans and clinical validation of magnetic resonance protocols.