Maggie Chang, Michelle Zhao, Emily M Whang, Rebecca A Lee, Donald K Scott, Jen-Chywan Wang
{"title":"The sphingosine-1-phosphate receptor 2 S1PR2 mediates chronic glucocorticoid exposure-induced hepatic steatosis and hypertriglyceridemia.","authors":"Maggie Chang, Michelle Zhao, Emily M Whang, Rebecca A Lee, Donald K Scott, Jen-Chywan Wang","doi":"10.1016/j.jbc.2025.110353","DOIUrl":null,"url":null,"abstract":"<p><p>Glucocorticoids are potent anti-inflammatory agents that are frequently used to treat inflammatory and autoimmune diseases. Chronic glucocorticoid treatment, however, causes unwanted adverse effects such as hypertriglyceridemia and hepatic steatosis. Here we showed that reducing the expression of sphingosine-1-phosphate receptor 2 (S1PR2) in mice liver reduced chronic glucocorticoid exposure induced triglyceride accumulation in the liver and the plasma. Chronic glucocorticoid treatment increased the recruitment of sterol regulatory element-binding protein 1c (Srebp1c) to the sterol regulatory element of mouse fatty acid synthase (Fasn) gene. This response was attenuated in hepatic S1PR2 knockdown mice. Chronic glucocorticoid treatment also increased the recruitment of carbohydrate response element binding protein (ChREBP) to the carbohydrate response elements (ChoREs) of lipogenic and glycolytic genes. This response was partially reduced in hepatic S1PR2 knockdown mice. Reducing hepatic ChREBP expression reduced the expression of Pklr, Me1, and Fasn. However, long-term glucocorticoid induced triglyceride accumulation in the liver and the plasma were not affected whereas the hepatic lactate levels were decreased. Thus, ChREBP plays a major role in chronic glucocorticoid induced glycolysis whereas its role in hypertriglyceridemia and hepatic steatosis was modest. Overall, this study demonstrated that hepatic S1PR2 signaling plays a partial but significant role in chronic glucocorticoid exposure-activated Srebp1c and ChREBP which promote lipogenesis and glycolysis, respectively.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"110353"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110353","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glucocorticoids are potent anti-inflammatory agents that are frequently used to treat inflammatory and autoimmune diseases. Chronic glucocorticoid treatment, however, causes unwanted adverse effects such as hypertriglyceridemia and hepatic steatosis. Here we showed that reducing the expression of sphingosine-1-phosphate receptor 2 (S1PR2) in mice liver reduced chronic glucocorticoid exposure induced triglyceride accumulation in the liver and the plasma. Chronic glucocorticoid treatment increased the recruitment of sterol regulatory element-binding protein 1c (Srebp1c) to the sterol regulatory element of mouse fatty acid synthase (Fasn) gene. This response was attenuated in hepatic S1PR2 knockdown mice. Chronic glucocorticoid treatment also increased the recruitment of carbohydrate response element binding protein (ChREBP) to the carbohydrate response elements (ChoREs) of lipogenic and glycolytic genes. This response was partially reduced in hepatic S1PR2 knockdown mice. Reducing hepatic ChREBP expression reduced the expression of Pklr, Me1, and Fasn. However, long-term glucocorticoid induced triglyceride accumulation in the liver and the plasma were not affected whereas the hepatic lactate levels were decreased. Thus, ChREBP plays a major role in chronic glucocorticoid induced glycolysis whereas its role in hypertriglyceridemia and hepatic steatosis was modest. Overall, this study demonstrated that hepatic S1PR2 signaling plays a partial but significant role in chronic glucocorticoid exposure-activated Srebp1c and ChREBP which promote lipogenesis and glycolysis, respectively.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.