Priscilla Van den Ackerveken, Clotilde Hannart, Dorian Pamart, Robin Varsebroucq, Marion Wargnies, Olivia Thiry, Marie Lurkin, Séverine Vincent, Muriel Chapelier, Guillaume Rommelaere, Marielle Herzog
{"title":"High-Throughput Epigenetic Profiling Immunoassays for Accelerated Disease Research and Clinical Development.","authors":"Priscilla Van den Ackerveken, Clotilde Hannart, Dorian Pamart, Robin Varsebroucq, Marion Wargnies, Olivia Thiry, Marie Lurkin, Séverine Vincent, Muriel Chapelier, Guillaume Rommelaere, Marielle Herzog","doi":"10.1016/j.jbc.2025.110352","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetics, which examines the regulation of genes without modification of the DNA sequence, plays a crucial role in various biological processes and disease mechanisms. Among the different forms of epigenetic modifications, histone post-translational modifications (PTMs) are important for modulating chromatin structure and gene expression. Aberrant levels of histone PTMs are implicated in a wide range of diseases, including cancer, making them promising targets for biomarker discovery and therapeutic intervention. In this context, blood, tissues, or cells serve as valuable resources for epigenetic research and analysis. Traditional methods such as mass spectrometry and western blotting are widely used to study histone PTMs, providing qualitative and (semi)quantitative information. However, these techniques often face limitations that could include throughput and scalability, particularly when applied to clinical samples. To overcome these challenges, we developed and validated 13 Nu.Q® immunoassays to detect and quantify specific histone PTM-nucleosomes from K2EDTA plasma samples. Then, we tested these assays on other types of samples, including chromatin extracts from frozen tissues, as well as cell lines and white blood cells Our findings demonstrate that the Nu.Q® assays offer high specificity, sensitivity, precision and linearity, making them effective tools for epigenetic profiling. A comparative analysis of HeLa cells using mass spectrometry, Western blot, and Nu.Q® immunoassays revealed a consistent histone PTMs signature, further validating the effectiveness of these assays. Additionally, we successfully applied Nu.Q® assays across various biological samples, including human tissues from different organs and specific white blood cell subtypes, highlighting their versatility and applicability in diverse biological contexts.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"110352"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110352","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epigenetics, which examines the regulation of genes without modification of the DNA sequence, plays a crucial role in various biological processes and disease mechanisms. Among the different forms of epigenetic modifications, histone post-translational modifications (PTMs) are important for modulating chromatin structure and gene expression. Aberrant levels of histone PTMs are implicated in a wide range of diseases, including cancer, making them promising targets for biomarker discovery and therapeutic intervention. In this context, blood, tissues, or cells serve as valuable resources for epigenetic research and analysis. Traditional methods such as mass spectrometry and western blotting are widely used to study histone PTMs, providing qualitative and (semi)quantitative information. However, these techniques often face limitations that could include throughput and scalability, particularly when applied to clinical samples. To overcome these challenges, we developed and validated 13 Nu.Q® immunoassays to detect and quantify specific histone PTM-nucleosomes from K2EDTA plasma samples. Then, we tested these assays on other types of samples, including chromatin extracts from frozen tissues, as well as cell lines and white blood cells Our findings demonstrate that the Nu.Q® assays offer high specificity, sensitivity, precision and linearity, making them effective tools for epigenetic profiling. A comparative analysis of HeLa cells using mass spectrometry, Western blot, and Nu.Q® immunoassays revealed a consistent histone PTMs signature, further validating the effectiveness of these assays. Additionally, we successfully applied Nu.Q® assays across various biological samples, including human tissues from different organs and specific white blood cell subtypes, highlighting their versatility and applicability in diverse biological contexts.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.