Multinational Attitudes Toward AI in Health Care and Diagnostics Among Hospital Patients.

IF 10.5 1区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Felix Busch, Lena Hoffmann, Lina Xu, Long Jiang Zhang, Bin Hu, Ignacio García-Juárez, Liz N Toapanta-Yanchapaxi, Natalia Gorelik, Valérie Gorelik, Gaston A Rodriguez-Granillo, Carlos Ferrarotti, Nguyen N Cuong, Chau A P Thi, Murat Tuncel, Gürsan Kaya, Sergio M Solis-Barquero, Maria C Mendez Avila, Nevena G Ivanova, Felipe C Kitamura, Karina Y I Hayama, Monserrat L Puntunet Bates, Pedro Iturralde Torres, Esteban Ortiz-Prado, Juan S Izquierdo-Condoy, Gilbert M Schwarz, Jochen G Hofstaetter, Michihiro Hide, Konagi Takeda, Barbara Peric, Gašper Pilko, Hans O Thulesius, Thomas Lindow, Israel K Kolawole, Samuel Adegboyega Olatoke, Andrzej Grzybowski, Alexandru Corlateanu, Oana-Simina Iaconi, Ting Li, Izabela Domitrz, Katarzyna Kepczynska, Matúš Mihalcin, Lenka Fašaneková, Tomasz Zatonski, Katarzyna Fulek, András Molnár, Stefani Maihoub, Zenewton A da Silva Gama, Luca Saba, Petros Sountoulides, Marcus R Makowski, Hugo J W L Aerts, Lisa C Adams, Keno K Bressem, Álvaro Aceña Navarro, Catarina Águas, Martina Aineseder, Muaed Alomar, Rashid Al Sliman, Gautam Anand, Salita Angkurawaranon, Shuhei Aoki, Samuel Arkoh, Gizem Ashraf, Yesi Astri, Sameer Bakhshi, Nuru Y Bayramov, Antonis Billis, Almir G V Bitencourt, Anetta Bolejko, Antonio J Bollas Becerra, Joe Bwambale, Andreia Capela, Riccardo Cau, Kelly R Chacon-Acevedo, Tafadzwa L Chaunzwa, Rubens Chojniak, Warren Clements, Renato Cuocolo, Victor Dahlblom, Kelienny de Meneses Sousa, Jorge Esteban Villarrubia, Vijay B Desai, Ajaya K Dhakal, Virginia Dignum, Rubens G Feijo Andrade, Giovanna Ferraioli, Shuvadeep Ganguly, Harshit Garg, Cvetanka Gjerakaroska Savevska, Marija Gjerakaroska Radovikj, Anastasia Gkartzoni, Luis Gorospe, Ian Griffin, Martin Hadamitzky, Martin Hakorimana Ndahiro, Alessa Hering, Bruno Hochhegger, Mehriban R Huseynova, Fujimaro Ishida, Nisha Jha, Lili Jiang, Rawen Kader, Helen Kavnoudias, Clément Klein, George Kolostoumpis, Abraham Koshy, Nicholas A Kruger, Alexander Löser, Marko Lucijanic, Despoina Mantziari, Gaelle Margue, Sonyia McFadden, Masahiro Miyake, Wipawee Morakote, Issa Ngabonziza, Thao T Nguyen, Stefan M Niehues, Marc Nortje, Subish Palaian, Natalia V Pentara, Rui P Pereira de Almeida, Gianluigi Poma, Mitayani Purwoko, Nikolaos Pyrgidis, Vasileios Rafailidis, Clare Rainey, João C Ribeiro, Nicolás Rozo Agudelo, Keina Sado, Julia M Saidman, Pedro J Saturno-Hernandez, Vidyani Suryadevara, Gerald B Schulz, Ena Soric, Javier Soto-Pérez-Olivares, Arnaldo Stanzione, Julian Peter Struck, Hiroyuki Takaoka, Satoru Tanioka, Tran T M Huyen, Daniel Truhn, Elon H C van Dijk, Peter van Wijngaarden, Yuan-Cheng Wang, Matthias Weidlich, Shuhang Zhang
{"title":"Multinational Attitudes Toward AI in Health Care and Diagnostics Among Hospital Patients.","authors":"Felix Busch, Lena Hoffmann, Lina Xu, Long Jiang Zhang, Bin Hu, Ignacio García-Juárez, Liz N Toapanta-Yanchapaxi, Natalia Gorelik, Valérie Gorelik, Gaston A Rodriguez-Granillo, Carlos Ferrarotti, Nguyen N Cuong, Chau A P Thi, Murat Tuncel, Gürsan Kaya, Sergio M Solis-Barquero, Maria C Mendez Avila, Nevena G Ivanova, Felipe C Kitamura, Karina Y I Hayama, Monserrat L Puntunet Bates, Pedro Iturralde Torres, Esteban Ortiz-Prado, Juan S Izquierdo-Condoy, Gilbert M Schwarz, Jochen G Hofstaetter, Michihiro Hide, Konagi Takeda, Barbara Peric, Gašper Pilko, Hans O Thulesius, Thomas Lindow, Israel K Kolawole, Samuel Adegboyega Olatoke, Andrzej Grzybowski, Alexandru Corlateanu, Oana-Simina Iaconi, Ting Li, Izabela Domitrz, Katarzyna Kepczynska, Matúš Mihalcin, Lenka Fašaneková, Tomasz Zatonski, Katarzyna Fulek, András Molnár, Stefani Maihoub, Zenewton A da Silva Gama, Luca Saba, Petros Sountoulides, Marcus R Makowski, Hugo J W L Aerts, Lisa C Adams, Keno K Bressem, Álvaro Aceña Navarro, Catarina Águas, Martina Aineseder, Muaed Alomar, Rashid Al Sliman, Gautam Anand, Salita Angkurawaranon, Shuhei Aoki, Samuel Arkoh, Gizem Ashraf, Yesi Astri, Sameer Bakhshi, Nuru Y Bayramov, Antonis Billis, Almir G V Bitencourt, Anetta Bolejko, Antonio J Bollas Becerra, Joe Bwambale, Andreia Capela, Riccardo Cau, Kelly R Chacon-Acevedo, Tafadzwa L Chaunzwa, Rubens Chojniak, Warren Clements, Renato Cuocolo, Victor Dahlblom, Kelienny de Meneses Sousa, Jorge Esteban Villarrubia, Vijay B Desai, Ajaya K Dhakal, Virginia Dignum, Rubens G Feijo Andrade, Giovanna Ferraioli, Shuvadeep Ganguly, Harshit Garg, Cvetanka Gjerakaroska Savevska, Marija Gjerakaroska Radovikj, Anastasia Gkartzoni, Luis Gorospe, Ian Griffin, Martin Hadamitzky, Martin Hakorimana Ndahiro, Alessa Hering, Bruno Hochhegger, Mehriban R Huseynova, Fujimaro Ishida, Nisha Jha, Lili Jiang, Rawen Kader, Helen Kavnoudias, Clément Klein, George Kolostoumpis, Abraham Koshy, Nicholas A Kruger, Alexander Löser, Marko Lucijanic, Despoina Mantziari, Gaelle Margue, Sonyia McFadden, Masahiro Miyake, Wipawee Morakote, Issa Ngabonziza, Thao T Nguyen, Stefan M Niehues, Marc Nortje, Subish Palaian, Natalia V Pentara, Rui P Pereira de Almeida, Gianluigi Poma, Mitayani Purwoko, Nikolaos Pyrgidis, Vasileios Rafailidis, Clare Rainey, João C Ribeiro, Nicolás Rozo Agudelo, Keina Sado, Julia M Saidman, Pedro J Saturno-Hernandez, Vidyani Suryadevara, Gerald B Schulz, Ena Soric, Javier Soto-Pérez-Olivares, Arnaldo Stanzione, Julian Peter Struck, Hiroyuki Takaoka, Satoru Tanioka, Tran T M Huyen, Daniel Truhn, Elon H C van Dijk, Peter van Wijngaarden, Yuan-Cheng Wang, Matthias Weidlich, Shuhang Zhang","doi":"10.1001/jamanetworkopen.2025.14452","DOIUrl":null,"url":null,"abstract":"<p><strong>Importance: </strong>The successful implementation of artificial intelligence (AI) in health care depends on its acceptance by key stakeholders, particularly patients, who are the primary beneficiaries of AI-driven outcomes.</p><p><strong>Objectives: </strong>To survey hospital patients to investigate their trust, concerns, and preferences toward the use of AI in health care and diagnostics and to assess the sociodemographic factors associated with patient attitudes.</p><p><strong>Design, setting, and participants: </strong>This cross-sectional study developed and implemented an anonymous quantitative survey between February 1 and November 1, 2023, using a nonprobability sample at 74 hospitals in 43 countries. Participants included hospital patients 18 years of age or older who agreed with voluntary participation in the survey presented in 1 of 26 languages.</p><p><strong>Exposure: </strong>Information sheets and paper surveys handed out by hospital staff and posted in conspicuous hospital locations.</p><p><strong>Main outcomes and measures: </strong>The primary outcome was participant responses to a 26-item instrument containing a general data section (8 items) and 3 dimensions (trust in AI, AI and diagnosis, preferences and concerns toward AI) with 6 items each. Subgroup analyses used cumulative link mixed and binary mixed-effects models.</p><p><strong>Results: </strong>In total, 13 806 patients participated, including 8951 (64.8%) in the Global North and 4855 (35.2%) in the Global South. Their median (IQR) age was 48 (34-62) years, and 6973 (50.5%) were male. The survey results indicated a predominantly favorable general view of AI in health care, with 57.6% of respondents (7775 of 13 502) expressing a positive attitude. However, attitudes exhibited notable variation based on demographic characteristics, health status, and technological literacy. Female respondents (3511 of 6318 [55.6%]) exhibited fewer positive attitudes toward AI use in medicine than male respondents (4057 of 6864 [59.1%]), and participants with poorer health status exhibited fewer positive attitudes toward AI use in medicine (eg, 58 of 199 [29.2%] with rather negative views) than patients with very good health (eg, 134 of 2538 [5.3%] with rather negative views). Conversely, higher levels of AI knowledge and frequent use of technology devices were associated with more positive attitudes. Notably, fewer than half of the participants expressed positive attitudes regarding all items pertaining to trust in AI. The lowest level of trust was observed for the accuracy of AI in providing information regarding treatment responses (5637 of 13 480 respondents [41.8%] trusted AI). Patients preferred explainable AI (8816 of 12 563 [70.2%]) and physician-led decision-making (9222 of 12 652 [72.9%]), even if it meant slightly compromised accuracy.</p><p><strong>Conclusions and relevance: </strong>In this cross-sectional study of patient attitudes toward AI use in health care across 6 continents, findings indicated that tailored AI implementation strategies should take patient demographics, health status, and preferences for explainable AI and physician oversight into account.</p>","PeriodicalId":14694,"journal":{"name":"JAMA Network Open","volume":"8 6","pages":"e2514452"},"PeriodicalIF":10.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12152705/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMA Network Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1001/jamanetworkopen.2025.14452","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Importance: The successful implementation of artificial intelligence (AI) in health care depends on its acceptance by key stakeholders, particularly patients, who are the primary beneficiaries of AI-driven outcomes.

Objectives: To survey hospital patients to investigate their trust, concerns, and preferences toward the use of AI in health care and diagnostics and to assess the sociodemographic factors associated with patient attitudes.

Design, setting, and participants: This cross-sectional study developed and implemented an anonymous quantitative survey between February 1 and November 1, 2023, using a nonprobability sample at 74 hospitals in 43 countries. Participants included hospital patients 18 years of age or older who agreed with voluntary participation in the survey presented in 1 of 26 languages.

Exposure: Information sheets and paper surveys handed out by hospital staff and posted in conspicuous hospital locations.

Main outcomes and measures: The primary outcome was participant responses to a 26-item instrument containing a general data section (8 items) and 3 dimensions (trust in AI, AI and diagnosis, preferences and concerns toward AI) with 6 items each. Subgroup analyses used cumulative link mixed and binary mixed-effects models.

Results: In total, 13 806 patients participated, including 8951 (64.8%) in the Global North and 4855 (35.2%) in the Global South. Their median (IQR) age was 48 (34-62) years, and 6973 (50.5%) were male. The survey results indicated a predominantly favorable general view of AI in health care, with 57.6% of respondents (7775 of 13 502) expressing a positive attitude. However, attitudes exhibited notable variation based on demographic characteristics, health status, and technological literacy. Female respondents (3511 of 6318 [55.6%]) exhibited fewer positive attitudes toward AI use in medicine than male respondents (4057 of 6864 [59.1%]), and participants with poorer health status exhibited fewer positive attitudes toward AI use in medicine (eg, 58 of 199 [29.2%] with rather negative views) than patients with very good health (eg, 134 of 2538 [5.3%] with rather negative views). Conversely, higher levels of AI knowledge and frequent use of technology devices were associated with more positive attitudes. Notably, fewer than half of the participants expressed positive attitudes regarding all items pertaining to trust in AI. The lowest level of trust was observed for the accuracy of AI in providing information regarding treatment responses (5637 of 13 480 respondents [41.8%] trusted AI). Patients preferred explainable AI (8816 of 12 563 [70.2%]) and physician-led decision-making (9222 of 12 652 [72.9%]), even if it meant slightly compromised accuracy.

Conclusions and relevance: In this cross-sectional study of patient attitudes toward AI use in health care across 6 continents, findings indicated that tailored AI implementation strategies should take patient demographics, health status, and preferences for explainable AI and physician oversight into account.

跨国公司对人工智能在医疗保健和医院患者诊断中的态度。
重要性:人工智能(AI)在卫生保健领域的成功实施取决于关键利益攸关方(特别是患者)对其的接受程度,他们是人工智能驱动结果的主要受益者。目的:调查医院患者对人工智能在医疗保健和诊断中使用的信任、担忧和偏好,并评估与患者态度相关的社会人口因素。设计、环境和参与者:本横断面研究在2023年2月1日至11月1日期间开发并实施了一项匿名定量调查,使用了43个国家74家医院的非概率样本。参与者包括18岁或以上的医院病人,他们同意自愿参加以26种语言中的一种进行的调查。接触:由医院工作人员分发并张贴在医院显眼位置的信息表和纸质调查问卷。主要结果和测量:主要结果是参与者对一个包含26个项目的工具的反应,该工具包含一般数据部分(8个项目)和3个维度(对人工智能的信任、人工智能和诊断、对人工智能的偏好和关注),每个维度有6个项目。亚组分析采用累积链接混合和二元混合效应模型。结果:共13 806例患者参与,其中全球北方8951例(64.8%),全球南方4855例(35.2%)。他们的中位(IQR)年龄为48岁(34-62岁),男性6973人(50.5%)。调查结果显示,人们对人工智能在医疗保健领域的总体看法主要是有利的,57.6%的受访者(13 502中的7775人)表达了积极的态度。然而,根据人口特征、健康状况和技术素养,态度表现出显著差异。女性受访者(6318人中有3511人[55.6%])对医学中使用人工智能的积极态度少于男性受访者(6864人中有4057人[59.1%]),健康状况较差的参与者对医学中使用人工智能的积极态度较少(例如,199人中有58人[29.2%]持相当消极的态度)比健康状况良好的患者(例如,2538人中有134人[5.3%]持相当消极的态度)。相反,更高水平的人工智能知识和频繁使用技术设备与更积极的态度相关。值得注意的是,不到一半的参与者对与人工智能信任有关的所有项目都持积极态度。人工智能在提供有关治疗反应的信息方面的准确性被观察到最低的信任水平(13 480名受访者中有5637人[41.8%]信任人工智能)。患者更喜欢可解释的人工智能(12 563中的8816人[70.2%])和医生主导的决策(12 652中的9222人[72.9%]),即使这意味着准确性略有降低。结论和相关性:在这项横跨六大洲的患者对在医疗保健中使用人工智能的态度的横断面研究中,研究结果表明,量身定制的人工智能实施策略应考虑患者人口统计、健康状况以及对可解释的人工智能和医生监督的偏好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMA Network Open
JAMA Network Open Medicine-General Medicine
CiteScore
16.00
自引率
2.90%
发文量
2126
审稿时长
16 weeks
期刊介绍: JAMA Network Open, a member of the esteemed JAMA Network, stands as an international, peer-reviewed, open-access general medical journal.The publication is dedicated to disseminating research across various health disciplines and countries, encompassing clinical care, innovation in health care, health policy, and global health. JAMA Network Open caters to clinicians, investigators, and policymakers, providing a platform for valuable insights and advancements in the medical field. As part of the JAMA Network, a consortium of peer-reviewed general medical and specialty publications, JAMA Network Open contributes to the collective knowledge and understanding within the medical community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信