Mericka McCabe, Rajanya Bhattacharyya, Rebecca Sereda, Olaya Santiago-Fernández, Rabia R Khawaja, Antonio Diaz, Kristen Lindenau, Deniz Gulfem Ozturk, Thomas P Garner, Simone Sidoli, Ana Maria Cuervo, Evripidis Gavathiotis
{"title":"Small molecule disruption of RARα/NCoR1 interaction inhibits chaperone-mediated autophagy in cancer.","authors":"Mericka McCabe, Rajanya Bhattacharyya, Rebecca Sereda, Olaya Santiago-Fernández, Rabia R Khawaja, Antonio Diaz, Kristen Lindenau, Deniz Gulfem Ozturk, Thomas P Garner, Simone Sidoli, Ana Maria Cuervo, Evripidis Gavathiotis","doi":"10.1038/s44321-025-00254-y","DOIUrl":null,"url":null,"abstract":"<p><p>Chaperone-mediated autophagy (CMA), a type of selective degradation of cytosolic proteins in lysosomes, is commonly upregulated in cancer cells, contributing to their survival and growth. The lack of a specific target for CMA inhibition has limited CMA blockage to genetic manipulations or global lysosomal function inhibition. Here, using genetic modulation, transcriptional analysis, and functional studies, we demonstrate a regulatory role for the interaction of the retinoic acid receptor alpha (RARα) and its corepressor, the nuclear receptor corepressor 1 (NCoR1), on CMA in non-small cell lung cancer (NSCLC). By targeting the disruption of the NCoR1/RARα complex with a structure-based screening strategy, we identified compound CIM7, a potent and selective CMA inhibitor that has no effect on macroautophagy. CIM7 preferentially inhibits CMA in NSCLC cells over normal cells, reduces tumor growth in NSCLC cells, and demonstrates efficacy in an in vivo xenograft mouse model with no observed toxicity in blood or major tissues. These findings reveal a druggable mechanism for selective CMA inhibition and a first-in-class CMA inhibitor as a potential therapeutic strategy for NSCLC.</p>","PeriodicalId":11597,"journal":{"name":"EMBO Molecular Medicine","volume":" ","pages":"1716-1755"},"PeriodicalIF":8.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s44321-025-00254-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chaperone-mediated autophagy (CMA), a type of selective degradation of cytosolic proteins in lysosomes, is commonly upregulated in cancer cells, contributing to their survival and growth. The lack of a specific target for CMA inhibition has limited CMA blockage to genetic manipulations or global lysosomal function inhibition. Here, using genetic modulation, transcriptional analysis, and functional studies, we demonstrate a regulatory role for the interaction of the retinoic acid receptor alpha (RARα) and its corepressor, the nuclear receptor corepressor 1 (NCoR1), on CMA in non-small cell lung cancer (NSCLC). By targeting the disruption of the NCoR1/RARα complex with a structure-based screening strategy, we identified compound CIM7, a potent and selective CMA inhibitor that has no effect on macroautophagy. CIM7 preferentially inhibits CMA in NSCLC cells over normal cells, reduces tumor growth in NSCLC cells, and demonstrates efficacy in an in vivo xenograft mouse model with no observed toxicity in blood or major tissues. These findings reveal a druggable mechanism for selective CMA inhibition and a first-in-class CMA inhibitor as a potential therapeutic strategy for NSCLC.
期刊介绍:
EMBO Molecular Medicine is an open access journal in the field of experimental medicine, dedicated to science at the interface between clinical research and basic life sciences. In addition to human data, we welcome original studies performed in cells and/or animals provided they demonstrate human disease relevance.
To enhance and better specify our commitment to precision medicine, we have expanded the scope of EMM and call for contributions in the following fields:
Environmental health and medicine, in particular studies in the field of environmental medicine in its functional and mechanistic aspects (exposome studies, toxicology, biomarkers, modeling, and intervention).
Clinical studies and case reports - Human clinical studies providing decisive clues how to control a given disease (epidemiological, pathophysiological, therapeutic, and vaccine studies). Case reports supporting hypothesis-driven research on the disease.
Biomedical technologies - Studies that present innovative materials, tools, devices, and technologies with direct translational potential and applicability (imaging technologies, drug delivery systems, tissue engineering, and AI)