Web search trends on fibromyalgia: development of a machine learning model.

IF 3.4 4区 医学 Q2 RHEUMATOLOGY
Matteo Luigi G Leoni, Marco Mercieri, Antonella Paladini, Marco Cascella, Martina Rekatsina, Fabiola Atzeni, Alberto Pasqualucci, Laura Bazzichi, Fausto Salaffi, Piercarlo Sarzi-Puttini, Giustino Varrassi
{"title":"Web search trends on fibromyalgia: development of a machine learning model.","authors":"Matteo Luigi G Leoni, Marco Mercieri, Antonella Paladini, Marco Cascella, Martina Rekatsina, Fabiola Atzeni, Alberto Pasqualucci, Laura Bazzichi, Fausto Salaffi, Piercarlo Sarzi-Puttini, Giustino Varrassi","doi":"10.55563/clinexprheumatol/05r0ib","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Fibromyalgia (FM) is a chronic pain condition characterised by widespread musculoskeletal pain, fatigue, and cognitive dysfunction. The growing reliance on the internet for health-related information has transformed how individuals seek medical knowledge, particularly for complex conditions like FM. This study aimed to analyse online search behaviours related to FM across multiple countries, identify temporal trends, and assess machine learning models for predicting search interest.</p><p><strong>Methods: </strong>Google Trends data (2020-2024) were analysed across sixteen countries. Time-series analysis, linear regression, and the Mann-Kendall trend test assessed monotonic trends, while seasonal decomposition identified periodic fluctuations. An Auto-Regressive Integrated Moving Average (ARIMA) model forecasted search volumes for 2025. Machine learning models, including Random Forest (RF) and Extreme Gradient Boosting (XGBoost), were used to predict search trends, with feature importance evaluated using SHAP (Shapley Additive Explanations) values.</p><p><strong>Results: </strong>Search interest in FM varied across countries, with China, the UK, the USA and Canada showing the highest engagement, while Peru, Spain and Turkey had the lowest. Brazil, Italy and the UK exhibited rising search trends, whereas Argentina, Canada, Greece and the USA showed declines. Seasonal analysis revealed mid-year peaks in Brazil and Italy, while Turkey saw late autumn increases. ARIMA forecasting predicted stable or increasing trends in Brazil, Canada and Mexico, while Germany and Venezuela showed slight declines. Machine learning analysis identified short-term search history (search volumes from the previous day, week, and month) as the most influential predictor.</p><p><strong>Conclusions: </strong>Understanding online search behaviour can enhance FM education. Targeted awareness campaigns and improved digital health literacy initiatives could sustain engagement and improve patient knowledge. Future efforts should focus on optimising online health resources and integrating evidence-based decision aids.</p>","PeriodicalId":10274,"journal":{"name":"Clinical and experimental rheumatology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and experimental rheumatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.55563/clinexprheumatol/05r0ib","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Fibromyalgia (FM) is a chronic pain condition characterised by widespread musculoskeletal pain, fatigue, and cognitive dysfunction. The growing reliance on the internet for health-related information has transformed how individuals seek medical knowledge, particularly for complex conditions like FM. This study aimed to analyse online search behaviours related to FM across multiple countries, identify temporal trends, and assess machine learning models for predicting search interest.

Methods: Google Trends data (2020-2024) were analysed across sixteen countries. Time-series analysis, linear regression, and the Mann-Kendall trend test assessed monotonic trends, while seasonal decomposition identified periodic fluctuations. An Auto-Regressive Integrated Moving Average (ARIMA) model forecasted search volumes for 2025. Machine learning models, including Random Forest (RF) and Extreme Gradient Boosting (XGBoost), were used to predict search trends, with feature importance evaluated using SHAP (Shapley Additive Explanations) values.

Results: Search interest in FM varied across countries, with China, the UK, the USA and Canada showing the highest engagement, while Peru, Spain and Turkey had the lowest. Brazil, Italy and the UK exhibited rising search trends, whereas Argentina, Canada, Greece and the USA showed declines. Seasonal analysis revealed mid-year peaks in Brazil and Italy, while Turkey saw late autumn increases. ARIMA forecasting predicted stable or increasing trends in Brazil, Canada and Mexico, while Germany and Venezuela showed slight declines. Machine learning analysis identified short-term search history (search volumes from the previous day, week, and month) as the most influential predictor.

Conclusions: Understanding online search behaviour can enhance FM education. Targeted awareness campaigns and improved digital health literacy initiatives could sustain engagement and improve patient knowledge. Future efforts should focus on optimising online health resources and integrating evidence-based decision aids.

纤维肌痛的网络搜索趋势:机器学习模型的发展。
目的:纤维肌痛(FM)是一种以广泛的肌肉骨骼疼痛、疲劳和认知功能障碍为特征的慢性疼痛疾病。人们越来越依赖互联网获取与健康相关的信息,这改变了个人寻求医学知识的方式,尤其是对于像FM这样的复杂疾病。本研究旨在分析多个国家与FM相关的在线搜索行为,确定时间趋势,并评估预测搜索兴趣的机器学习模型。方法:谷歌趋势数据(2020-2024)在16个国家进行分析。时间序列分析、线性回归和Mann-Kendall趋势检验评估了单调趋势,而季节分解确定了周期性波动。自回归综合移动平均(ARIMA)模型预测了2025年的搜索量。使用随机森林(RF)和极端梯度增强(XGBoost)等机器学习模型来预测搜索趋势,并使用SHAP (Shapley Additive Explanations)值评估特征重要性。结果:对FM的搜索兴趣因国家而异,中国、英国、美国和加拿大的参与度最高,而秘鲁、西班牙和土耳其的参与度最低。巴西、意大利和英国的搜索量呈上升趋势,而阿根廷、加拿大、希腊和美国的搜索量则有所下降。季节性分析显示,巴西和意大利在年中达到峰值,而土耳其在深秋增加。ARIMA预测,巴西、加拿大和墨西哥将保持稳定或增长趋势,而德国和委内瑞拉则略有下降。机器学习分析将短期搜索历史(前一天、前一周和前一个月的搜索量)确定为最具影响力的预测因子。结论:了解网络搜索行为可以加强FM教育。有针对性的提高认识运动和改进的数字卫生素养举措可以维持参与并改善患者的知识。未来的努力应侧重于优化在线卫生资源和整合基于证据的决策辅助工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
18.90%
发文量
377
审稿时长
3-6 weeks
期刊介绍: Clinical and Experimental Rheumatology is a bi-monthly international peer-reviewed journal which has been covering all clinical, experimental and translational aspects of musculoskeletal, arthritic and connective tissue diseases since 1983.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信