Exploring the role of density functional theory in the design of gold nanoparticles for targeted drug delivery: a systematic review.

IF 2.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Obiekezie C Obijiofor, Alexander S Novikov
{"title":"Exploring the role of density functional theory in the design of gold nanoparticles for targeted drug delivery: a systematic review.","authors":"Obiekezie C Obijiofor, Alexander S Novikov","doi":"10.1007/s00894-025-06405-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Targeted drug delivery systems leveraging gold nanoparticles (AuNPs) demand precise atomic-level design to overcome current limitations in drug-loading efficiency and controlled release. Unlike previous focused reviews, this systematic analysis compares density functional theory's (DFT) performance across multiple AuNP design challenges, including drug interactions, surface functionalization, and stimuli-responsive behaviors. DFT predicts binding energies with ~ 0.1 eV accuracy and elucidates electronic properties of AuNP-drug complexes, critical for optimizing drug delivery. For example, B3LYP-D3/LANL2DZ calculations predict a - 0.58 eV binding energy for thioabiraterone, ensuring stable chemisorption via sulfur-Au bonds, as validated by experimental binding assays. However, high computational costs restrict its application to large biomolecular systems. Emerging hybrid machine learning (ML)/DFT approaches address scalability while preserving quantum-mechanical accuracy, reducing computational costs from ~ 10<sup>6</sup> to ~ 10<sup>3</sup> CPU h for a 50 nm AuNP, positioning hybrid ML/DFT as a transformative approach for next-generation nanomedicine.</p><p><strong>Methods: </strong>This systematic evaluation covers DFT approaches including gradient-corrected (PBE), hybrid (B3LYP), and meta-GGA (M06-L) functionals, using relativistic basis sets (e.g., LANL2DZ) for Au atoms and polarized sets (e.g., 6-31G(d)) for organic ligands. Solvent effects are modeled via implicit (SMD) or explicit approaches. Time-dependent DFT (TD-DFT) analyzes localized surface plasmon resonance and frontier molecular orbitals. Multiscale approaches integrate DFT with molecular dynamics (MD) and machine learning interatomic potentials (MLIPs) to model extended systems, enabling simulations of AuNP-protein interactions for systems up to 10<sup>5</sup> atoms with ~ 0.2 eV accuracy.</p>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 7","pages":"186"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00894-025-06405-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Context: Targeted drug delivery systems leveraging gold nanoparticles (AuNPs) demand precise atomic-level design to overcome current limitations in drug-loading efficiency and controlled release. Unlike previous focused reviews, this systematic analysis compares density functional theory's (DFT) performance across multiple AuNP design challenges, including drug interactions, surface functionalization, and stimuli-responsive behaviors. DFT predicts binding energies with ~ 0.1 eV accuracy and elucidates electronic properties of AuNP-drug complexes, critical for optimizing drug delivery. For example, B3LYP-D3/LANL2DZ calculations predict a - 0.58 eV binding energy for thioabiraterone, ensuring stable chemisorption via sulfur-Au bonds, as validated by experimental binding assays. However, high computational costs restrict its application to large biomolecular systems. Emerging hybrid machine learning (ML)/DFT approaches address scalability while preserving quantum-mechanical accuracy, reducing computational costs from ~ 106 to ~ 103 CPU h for a 50 nm AuNP, positioning hybrid ML/DFT as a transformative approach for next-generation nanomedicine.

Methods: This systematic evaluation covers DFT approaches including gradient-corrected (PBE), hybrid (B3LYP), and meta-GGA (M06-L) functionals, using relativistic basis sets (e.g., LANL2DZ) for Au atoms and polarized sets (e.g., 6-31G(d)) for organic ligands. Solvent effects are modeled via implicit (SMD) or explicit approaches. Time-dependent DFT (TD-DFT) analyzes localized surface plasmon resonance and frontier molecular orbitals. Multiscale approaches integrate DFT with molecular dynamics (MD) and machine learning interatomic potentials (MLIPs) to model extended systems, enabling simulations of AuNP-protein interactions for systems up to 105 atoms with ~ 0.2 eV accuracy.

探索密度泛函理论在设计靶向给药金纳米颗粒中的作用:系统综述。
背景:利用金纳米颗粒(AuNPs)的靶向给药系统需要精确的原子级设计,以克服目前在载药效率和控释方面的限制。与之前的重点综述不同,本系统分析比较了密度泛函理论(DFT)在多种AuNP设计挑战中的表现,包括药物相互作用、表面功能化和刺激反应行为。DFT预测结合能的精度为~ 0.1 eV,并阐明了aunp -药物复合物的电子性质,这对优化药物递送至关重要。例如,B3LYP-D3/LANL2DZ计算预测硫阿比特龙的结合能为- 0.58 eV,通过硫-金键确保稳定的化学吸附,并通过实验结合分析验证。然而,高昂的计算成本限制了其在大型生物分子系统中的应用。新兴的混合机器学习(ML)/DFT方法在保持量子力学精度的同时解决了可扩展性问题,将50 nm AuNP的计算成本从~ 106降低到~ 103 CPU h,将混合ML/DFT定位为下一代纳米医学的变革方法。方法:该系统评估涵盖了DFT方法,包括梯度校正(PBE),杂化(B3LYP)和元gga (M06-L)泛函,使用Au原子的相对论基集(例如LANL2DZ)和有机配体的极化集(例如6-31G(d))。溶剂效应通过隐式(SMD)或显式方法建模。时变DFT (TD-DFT)分析局域表面等离子体共振和前沿分子轨道。多尺度方法将DFT与分子动力学(MD)和机器学习原子间势(MLIPs)相结合,对扩展系统进行建模,从而能够以~ 0.2 eV的精度模拟多达105个原子的aunp -蛋白质相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Modeling
Journal of Molecular Modeling 化学-化学综合
CiteScore
3.50
自引率
4.50%
发文量
362
审稿时长
2.9 months
期刊介绍: The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling. Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry. Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信