{"title":"Exploring the role of density functional theory in the design of gold nanoparticles for targeted drug delivery: a systematic review.","authors":"Obiekezie C Obijiofor, Alexander S Novikov","doi":"10.1007/s00894-025-06405-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Targeted drug delivery systems leveraging gold nanoparticles (AuNPs) demand precise atomic-level design to overcome current limitations in drug-loading efficiency and controlled release. Unlike previous focused reviews, this systematic analysis compares density functional theory's (DFT) performance across multiple AuNP design challenges, including drug interactions, surface functionalization, and stimuli-responsive behaviors. DFT predicts binding energies with ~ 0.1 eV accuracy and elucidates electronic properties of AuNP-drug complexes, critical for optimizing drug delivery. For example, B3LYP-D3/LANL2DZ calculations predict a - 0.58 eV binding energy for thioabiraterone, ensuring stable chemisorption via sulfur-Au bonds, as validated by experimental binding assays. However, high computational costs restrict its application to large biomolecular systems. Emerging hybrid machine learning (ML)/DFT approaches address scalability while preserving quantum-mechanical accuracy, reducing computational costs from ~ 10<sup>6</sup> to ~ 10<sup>3</sup> CPU h for a 50 nm AuNP, positioning hybrid ML/DFT as a transformative approach for next-generation nanomedicine.</p><p><strong>Methods: </strong>This systematic evaluation covers DFT approaches including gradient-corrected (PBE), hybrid (B3LYP), and meta-GGA (M06-L) functionals, using relativistic basis sets (e.g., LANL2DZ) for Au atoms and polarized sets (e.g., 6-31G(d)) for organic ligands. Solvent effects are modeled via implicit (SMD) or explicit approaches. Time-dependent DFT (TD-DFT) analyzes localized surface plasmon resonance and frontier molecular orbitals. Multiscale approaches integrate DFT with molecular dynamics (MD) and machine learning interatomic potentials (MLIPs) to model extended systems, enabling simulations of AuNP-protein interactions for systems up to 10<sup>5</sup> atoms with ~ 0.2 eV accuracy.</p>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 7","pages":"186"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00894-025-06405-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context: Targeted drug delivery systems leveraging gold nanoparticles (AuNPs) demand precise atomic-level design to overcome current limitations in drug-loading efficiency and controlled release. Unlike previous focused reviews, this systematic analysis compares density functional theory's (DFT) performance across multiple AuNP design challenges, including drug interactions, surface functionalization, and stimuli-responsive behaviors. DFT predicts binding energies with ~ 0.1 eV accuracy and elucidates electronic properties of AuNP-drug complexes, critical for optimizing drug delivery. For example, B3LYP-D3/LANL2DZ calculations predict a - 0.58 eV binding energy for thioabiraterone, ensuring stable chemisorption via sulfur-Au bonds, as validated by experimental binding assays. However, high computational costs restrict its application to large biomolecular systems. Emerging hybrid machine learning (ML)/DFT approaches address scalability while preserving quantum-mechanical accuracy, reducing computational costs from ~ 106 to ~ 103 CPU h for a 50 nm AuNP, positioning hybrid ML/DFT as a transformative approach for next-generation nanomedicine.
Methods: This systematic evaluation covers DFT approaches including gradient-corrected (PBE), hybrid (B3LYP), and meta-GGA (M06-L) functionals, using relativistic basis sets (e.g., LANL2DZ) for Au atoms and polarized sets (e.g., 6-31G(d)) for organic ligands. Solvent effects are modeled via implicit (SMD) or explicit approaches. Time-dependent DFT (TD-DFT) analyzes localized surface plasmon resonance and frontier molecular orbitals. Multiscale approaches integrate DFT with molecular dynamics (MD) and machine learning interatomic potentials (MLIPs) to model extended systems, enabling simulations of AuNP-protein interactions for systems up to 105 atoms with ~ 0.2 eV accuracy.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.