Unveiling the Impact of Electron Transport Layer and Hole Transport Layer Variations on Cs-Based Perovskite Solar Cells: A Combined Electrical and Optical Simulation Approach

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2025-04-13 DOI:10.1002/cnma.202500032
Md. Yasir Arafat, Sharifah Fatmadiana Wan Muhammad Hatta, Mohammad Aminul Islam, Mohd Rafie Johan, Yasmin Abdul Wahab
{"title":"Unveiling the Impact of Electron Transport Layer and Hole Transport Layer Variations on Cs-Based Perovskite Solar Cells: A Combined Electrical and Optical Simulation Approach","authors":"Md. Yasir Arafat,&nbsp;Sharifah Fatmadiana Wan Muhammad Hatta,&nbsp;Mohammad Aminul Islam,&nbsp;Mohd Rafie Johan,&nbsp;Yasmin Abdul Wahab","doi":"10.1002/cnma.202500032","DOIUrl":null,"url":null,"abstract":"<p>Perovskite solar cells (PSCs) have gained significant attention due to their high-power conversion efficiencies (PCE) and versatile material properties. This study uses advanced simulations with OghmaNano to explore the influence of electron transport layers (ETLs) and hole transport layers (HTLs) in cesium-based PSCs, specifically with Cs<sub>2</sub>AgBiBr<sub>6</sub> as the absorber material. By analyzing ZnO, SnO<sub>2</sub>, and TiO<sub>2</sub> as ETLs and NiOx and Cu<sub>2</sub>O as HTLs, this study determines the impact of layer properties and thickness on critical performance metrics, including PCE, <i>V</i><sub>oc</sub>, and <i>J</i><sub>sc</sub>. The study's simulations reveal that optimal absorber layer thicknesses are 100 nm for ZnO and SnO<sub>2</sub> and 400 nm for TiO<sub>2</sub>, achieving a peak PCE of 17.11% in the TiO<sub>2</sub>/Cu<sub>2</sub>O configuration. This study also observes that SnO<sub>2</sub>-based devices exhibit superior charge extraction capabilities due to reduced trap states, leading to a more stable voltage output. Additionally, photon recycling effects in Cs<sub>2</sub>AgBiBr<sub>6</sub> increase <i>J</i><sub>sc</sub> by up to 5%, a novel finding for cesium-based PSCs. Energy-level alignment analysis shows that TiO<sub>2</sub>/Cu<sub>2</sub>O minimizes recombination, enhancing fill factor and efficiency. Photon density distribution and energy-level spectra reveal the interplay between optical absorption, charge dynamics, and interface energetics, guiding device architecture optimization. These findings offer key insights for improving lead-free perovskite photovoltaics, enhancing efficiency and stability in future applications.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://aces.onlinelibrary.wiley.com/doi/10.1002/cnma.202500032","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite solar cells (PSCs) have gained significant attention due to their high-power conversion efficiencies (PCE) and versatile material properties. This study uses advanced simulations with OghmaNano to explore the influence of electron transport layers (ETLs) and hole transport layers (HTLs) in cesium-based PSCs, specifically with Cs2AgBiBr6 as the absorber material. By analyzing ZnO, SnO2, and TiO2 as ETLs and NiOx and Cu2O as HTLs, this study determines the impact of layer properties and thickness on critical performance metrics, including PCE, Voc, and Jsc. The study's simulations reveal that optimal absorber layer thicknesses are 100 nm for ZnO and SnO2 and 400 nm for TiO2, achieving a peak PCE of 17.11% in the TiO2/Cu2O configuration. This study also observes that SnO2-based devices exhibit superior charge extraction capabilities due to reduced trap states, leading to a more stable voltage output. Additionally, photon recycling effects in Cs2AgBiBr6 increase Jsc by up to 5%, a novel finding for cesium-based PSCs. Energy-level alignment analysis shows that TiO2/Cu2O minimizes recombination, enhancing fill factor and efficiency. Photon density distribution and energy-level spectra reveal the interplay between optical absorption, charge dynamics, and interface energetics, guiding device architecture optimization. These findings offer key insights for improving lead-free perovskite photovoltaics, enhancing efficiency and stability in future applications.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

揭示电子传输层和空穴传输层变化对铯基钙钛矿太阳能电池的影响:一种结合电学和光学的模拟方法
钙钛矿太阳能电池(PSCs)因其高功率转换效率(PCE)和多用途材料特性而受到广泛关注。本研究利用OghmaNano的先进模拟技术,探讨了电子传输层(ETLs)和空穴传输层(HTLs)对铯基psc的影响,特别是以Cs2AgBiBr6为吸收材料。通过分析ZnO、SnO2和TiO2作为etl和NiOx和Cu2O作为htl,本研究确定了层性质和厚度对关键性能指标的影响,包括PCE、Voc和Jsc。研究结果表明,ZnO和SnO2的最佳吸收层厚度为100 nm, TiO2的最佳吸收层厚度为400 nm, TiO2/Cu2O结构的峰值PCE为17.11%。该研究还观察到,基于sno2的器件由于减少了陷阱状态而表现出优越的电荷提取能力,从而导致更稳定的电压输出。此外,Cs2AgBiBr6中的光子循环效应使Jsc提高了5%,这是铯基psc的一个新发现。能级比对分析表明,TiO2/Cu2O能最大限度地减少复合,提高填充系数和效率。光子密度分布和能级谱揭示了光吸收、电荷动力学和界面能量学之间的相互作用,指导器件结构优化。这些发现为改进无铅钙钛矿光伏电池,提高未来应用的效率和稳定性提供了关键见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信