Surface Modification of Co3O4 by HfO2 for Efficient Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2025-05-14 DOI:10.1002/cnma.202500085
Anju Rani, Sukriti Sagar, Imtiaz Ahmed, Krishna Kanta Haldar
{"title":"Surface Modification of Co3O4 by HfO2 for Efficient Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution","authors":"Anju Rani,&nbsp;Sukriti Sagar,&nbsp;Imtiaz Ahmed,&nbsp;Krishna Kanta Haldar","doi":"10.1002/cnma.202500085","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the significant enhancement of electrocatalytic activity for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) achieved through surface modification of cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) with hafnium dioxide (HfO<sub>2</sub>). A mechanochemical approach is used to synthesize the surface-modified catalyst, optimizing the electronic properties and active site accessibility of Co<sub>3</sub>O<sub>4</sub> to attain superior electrocatalytic performance. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) characterization techniques confirmed the successful integration of HfO<sub>2</sub> into the Co<sub>3</sub>O<sub>4</sub> structure, resulting in an altered surface morphology and improved electronic conductivity. Electrochemical assessments demonstrate that the Co<sub>3</sub>O<sub>4</sub>/HfO<sub>2</sub> composite material exhibits exceptionally low overpotentials of 262 and 167 mV for the OER and HER, respectively, at a current density of 10 mA cm<sup>−2</sup>. These values significantly outperform those of unmodified Co<sub>3</sub>O<sub>4</sub>, which presents overpotentials exceeding 467 and 311 mV for the OER and HER, respectively. High mass activity and turnover frequency (TOF) values are observed for the Co<sub>3</sub>O<sub>4</sub>/HfO<sub>2</sub> composite, highlighting the catalyst's efficiency. This outstanding performance is attributed to enhanced charge transfer kinetics and optimized electronic interactions facilitated by the HfO<sub>2</sub> modification. Consequently, this study underscores the potential of the Co<sub>3</sub>O<sub>4</sub>/HfO<sub>2</sub> composite as a cost-effective and efficient electrocatalyst for water-splitting applications, reveal advancements in renewable energy technologies.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://aces.onlinelibrary.wiley.com/doi/10.1002/cnma.202500085","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the significant enhancement of electrocatalytic activity for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) achieved through surface modification of cobalt oxide (Co3O4) with hafnium dioxide (HfO2). A mechanochemical approach is used to synthesize the surface-modified catalyst, optimizing the electronic properties and active site accessibility of Co3O4 to attain superior electrocatalytic performance. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) characterization techniques confirmed the successful integration of HfO2 into the Co3O4 structure, resulting in an altered surface morphology and improved electronic conductivity. Electrochemical assessments demonstrate that the Co3O4/HfO2 composite material exhibits exceptionally low overpotentials of 262 and 167 mV for the OER and HER, respectively, at a current density of 10 mA cm−2. These values significantly outperform those of unmodified Co3O4, which presents overpotentials exceeding 467 and 311 mV for the OER and HER, respectively. High mass activity and turnover frequency (TOF) values are observed for the Co3O4/HfO2 composite, highlighting the catalyst's efficiency. This outstanding performance is attributed to enhanced charge transfer kinetics and optimized electronic interactions facilitated by the HfO2 modification. Consequently, this study underscores the potential of the Co3O4/HfO2 composite as a cost-effective and efficient electrocatalyst for water-splitting applications, reveal advancements in renewable energy technologies.

Abstract Image

Abstract Image

Abstract Image

用HfO2对Co3O4表面进行高效双功能析氢氧电催化剂的改性
本研究考察了用二氧化铪(HfO2)对氧化钴(Co3O4)进行表面改性,显著提高了析氢反应(HER)和析氧反应(OER)的电催化活性。采用机械化学方法合成了表面改性催化剂,优化了Co3O4的电子性质和活性位点可及性,获得了优异的电催化性能。x射线衍射(XRD)和x射线光电子能谱(XPS)表征技术证实了HfO2成功整合到Co3O4结构中,从而改变了表面形貌并提高了电子导电性。电化学评价表明,Co3O4/HfO2复合材料在电流密度为10 mA cm−2时,OER和HER的过电位分别为262和167 mV。这些值明显优于未修饰的Co3O4,其OER和HER的过电位分别超过467和311 mV。在Co3O4/HfO2复合材料中观察到较高的质量活性和周转频率(TOF)值,突出了催化剂的效率。这种优异的性能是由于HfO2修饰增强了电荷转移动力学和优化了电子相互作用。因此,这项研究强调了Co3O4/HfO2复合材料作为一种经济高效的水分解电催化剂的潜力,揭示了可再生能源技术的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信