A novel fractional order model for analyzing counterterrorism operations and mitigating extremism

Mutaz Mohammad , Isa Abdullahi Baba , Evren Hincal , Fathalla A. Rihan
{"title":"A novel fractional order model for analyzing counterterrorism operations and mitigating extremism","authors":"Mutaz Mohammad ,&nbsp;Isa Abdullahi Baba ,&nbsp;Evren Hincal ,&nbsp;Fathalla A. Rihan","doi":"10.1016/j.dajour.2025.100589","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the profound impact of terrorism on individuals and society by developing a fractional-order mathematical model to analyze and enhance counterterrorism efforts. The model accounts for the persistent and complex nature of extremist behavior, particularly emphasizing the importance of preventing violent extremism before it escalates into terrorism. Real-world data on terrorist activities in Nigeria – specifically from the Boko Haram insurgency – was used to calibrate and validate the model, ensuring its relevance and accuracy. The model reveals that the basic reproduction number (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) plays a decisive role in determining the long-term success of counterterrorism strategies. Numerical simulations show that terrorist activities decline when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span>, while they persist or escalate when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>. A comprehensive sensitivity analysis further identifies the most influential parameters affecting <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, providing actionable insights into where interventions can be most effective. Parameters related to recruitment, ideological spread, and counter-radicalization efforts were found to have the highest impact. The study concludes by offering strategic recommendations informed by the simulation and sensitivity results, aiming to support the design of more targeted and sustainable counterterrorism policies.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"15 ","pages":"Article 100589"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662225000451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the profound impact of terrorism on individuals and society by developing a fractional-order mathematical model to analyze and enhance counterterrorism efforts. The model accounts for the persistent and complex nature of extremist behavior, particularly emphasizing the importance of preventing violent extremism before it escalates into terrorism. Real-world data on terrorist activities in Nigeria – specifically from the Boko Haram insurgency – was used to calibrate and validate the model, ensuring its relevance and accuracy. The model reveals that the basic reproduction number (R0) plays a decisive role in determining the long-term success of counterterrorism strategies. Numerical simulations show that terrorist activities decline when R0<1, while they persist or escalate when R0>1. A comprehensive sensitivity analysis further identifies the most influential parameters affecting R0, providing actionable insights into where interventions can be most effective. Parameters related to recruitment, ideological spread, and counter-radicalization efforts were found to have the highest impact. The study concludes by offering strategic recommendations informed by the simulation and sensitivity results, aiming to support the design of more targeted and sustainable counterterrorism policies.
一种分析反恐行动和减轻极端主义的新型分数阶模型
本研究通过发展分数阶数学模型来分析和加强反恐努力,考察恐怖主义对个人和社会的深刻影响。该模型解释了极端主义行为的持久性和复杂性,特别强调了在暴力极端主义升级为恐怖主义之前防止暴力极端主义的重要性。尼日利亚恐怖活动的真实数据——特别是来自博科圣地叛乱的数据——被用来校准和验证模型,确保其相关性和准确性。该模型表明,基本再生产数(R0)对反恐战略的长期成功起着决定性作用。数值模拟表明,当R0>;1时,恐怖活动减少,而当R0>;1时,恐怖活动持续或升级。综合敏感性分析进一步确定影响R0的最具影响力的参数,为干预措施最有效的地方提供可操作的见解。与招募、意识形态传播和反激进化努力有关的参数被发现具有最大的影响。该研究最后根据模拟和敏感性结果提供战略建议,旨在支持设计更具针对性和可持续性的反恐政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信