Uncertainty-Aware Contrastive Learning for deep clustering

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Luyao Chang, Leiting Chen, Chuan Zhou
{"title":"Uncertainty-Aware Contrastive Learning for deep clustering","authors":"Luyao Chang,&nbsp;Leiting Chen,&nbsp;Chuan Zhou","doi":"10.1016/j.neucom.2025.130568","DOIUrl":null,"url":null,"abstract":"<div><div>Deep clustering aims to group unlabeled data into meaningful clusters by learning discriminative feature representations. However, ambiguous features often lead to noisy representations and inconsistent semantics, limiting improvements in clustering performance. To address this issue, we propose an Uncertainty-Aware Contrastive Learning (UACL) method for deep clustering, which achieves robustness by adaptively restricting the learning of ambiguous features. Specifically, we model pairwise similarity evidence via subjective logic theory, formulating co-cluster probabilities as a Dirichlet distribution to quantify epistemic uncertainty from feature ambiguity. Guided by this uncertainty, we design a dynamic weight-updating strategy that progressively extracts information from potential positives, enhancing the model’s ability to learn discriminative representations and semantically consistent clusters. Furthermore, to enforce attribute consistency, we develop an Attribute Distribution Alignment module that aligns similarity and uncertainty. Extensive experiments on five benchmark datasets demonstrate UACL outperforms current state-of-the-art methods, with an improved ACC of 3.5% for CIFAR-100 and 7.0% for ImageNet-Dogs. The source code is available at: <span><span>https://github.com/YL616/UACL</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"647 ","pages":"Article 130568"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225012408","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Deep clustering aims to group unlabeled data into meaningful clusters by learning discriminative feature representations. However, ambiguous features often lead to noisy representations and inconsistent semantics, limiting improvements in clustering performance. To address this issue, we propose an Uncertainty-Aware Contrastive Learning (UACL) method for deep clustering, which achieves robustness by adaptively restricting the learning of ambiguous features. Specifically, we model pairwise similarity evidence via subjective logic theory, formulating co-cluster probabilities as a Dirichlet distribution to quantify epistemic uncertainty from feature ambiguity. Guided by this uncertainty, we design a dynamic weight-updating strategy that progressively extracts information from potential positives, enhancing the model’s ability to learn discriminative representations and semantically consistent clusters. Furthermore, to enforce attribute consistency, we develop an Attribute Distribution Alignment module that aligns similarity and uncertainty. Extensive experiments on five benchmark datasets demonstrate UACL outperforms current state-of-the-art methods, with an improved ACC of 3.5% for CIFAR-100 and 7.0% for ImageNet-Dogs. The source code is available at: https://github.com/YL616/UACL.
深度聚类的不确定性感知对比学习
深度聚类旨在通过学习判别特征表示将未标记的数据分组为有意义的聚类。然而,模棱两可的特征通常会导致嘈杂的表示和不一致的语义,从而限制了聚类性能的改进。为了解决这个问题,我们提出了一种用于深度聚类的不确定性感知对比学习(UACL)方法,该方法通过自适应限制模糊特征的学习来实现鲁棒性。具体而言,我们通过主观逻辑理论对两两相似证据进行建模,将共聚类概率作为狄利克雷分布来量化特征模糊性带来的认知不确定性。在这种不确定性的指导下,我们设计了一个动态权重更新策略,逐步从潜在的正信息中提取信息,增强模型学习判别表示和语义一致聚类的能力。此外,为了加强属性一致性,我们开发了一个属性分布对齐模块来对齐相似性和不确定性。在五个基准数据集上进行的大量实验表明,UACL优于当前最先进的方法,CIFAR-100的ACC提高了3.5%,ImageNet-Dogs的ACC提高了7.0%。源代码可从https://github.com/YL616/UACL获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信