Vandana Narri , Amr Alanwar , Jonas Mårtensson , Henrik Pettersson , Fredrik Nordin , Karl Henrik Johansson
{"title":"Situational awareness using set-based estimation and vehicular communication: An occluded pedestrian-crossing scenario","authors":"Vandana Narri , Amr Alanwar , Jonas Mårtensson , Henrik Pettersson , Fredrik Nordin , Karl Henrik Johansson","doi":"10.1016/j.commtr.2025.100190","DOIUrl":null,"url":null,"abstract":"<div><div>The safety of unprotected road-users is crucial in any urban traffic. Occlusions and blind spots in the field-of-view of a vehicle can lead to unsafe situations. In this work, a specific pedestrian-crossing scenario is considered with an occlusion in the ego-vehicle's field-of-view. A novel framework is presented to enhance situational awareness based on vehicle-to-everything (V2X) communication to share perception data between vehicle and roadside units. It leverages set-based estimation utilizing a computationally efficient algorithm, for which the pedestrian is guaranteed to be located in a constrained zonotope. The proposed method has been validated through both simulation and real experiments. The real experiments are carried out on a test track using Scania autonomous vehicles.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100190"},"PeriodicalIF":14.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The safety of unprotected road-users is crucial in any urban traffic. Occlusions and blind spots in the field-of-view of a vehicle can lead to unsafe situations. In this work, a specific pedestrian-crossing scenario is considered with an occlusion in the ego-vehicle's field-of-view. A novel framework is presented to enhance situational awareness based on vehicle-to-everything (V2X) communication to share perception data between vehicle and roadside units. It leverages set-based estimation utilizing a computationally efficient algorithm, for which the pedestrian is guaranteed to be located in a constrained zonotope. The proposed method has been validated through both simulation and real experiments. The real experiments are carried out on a test track using Scania autonomous vehicles.