Chromatic number of random graphs: An approach using a recurrence relation

IF 1.4 Q2 MATHEMATICS, APPLIED
Yayoi Abe, Auna Setoh, Gen Yoneda
{"title":"Chromatic number of random graphs: An approach using a recurrence relation","authors":"Yayoi Abe,&nbsp;Auna Setoh,&nbsp;Gen Yoneda","doi":"10.1016/j.rinam.2025.100600","DOIUrl":null,"url":null,"abstract":"<div><div>The vertex coloring problem to find chromatic numbers is known to be unsolvable in polynomial time. Although various algorithms have been proposed to efficiently compute chromatic numbers, they tend to take an enormous amount of time for large graphs. In this paper, we propose a recurrence relation to rapidly obtain the expected value of the chromatic number of random graphs. Then we compare the results obtained using this recurrence relation with other methods using an exact investigation of all graphs, the Monte Carlo method, the iterated random color matching method, and the method presented in Bollobás’ previous studies.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100600"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The vertex coloring problem to find chromatic numbers is known to be unsolvable in polynomial time. Although various algorithms have been proposed to efficiently compute chromatic numbers, they tend to take an enormous amount of time for large graphs. In this paper, we propose a recurrence relation to rapidly obtain the expected value of the chromatic number of random graphs. Then we compare the results obtained using this recurrence relation with other methods using an exact investigation of all graphs, the Monte Carlo method, the iterated random color matching method, and the method presented in Bollobás’ previous studies.
随机图的色数:一种使用递归关系的方法
求色数的顶点着色问题在多项式时间内是不可解的。尽管已经提出了各种算法来有效地计算色数,但对于大型图,它们往往需要花费大量的时间。本文提出了一种递推关系,可快速求出随机图的色数期望值。然后,我们将这种递归关系与其他方法得到的结果进行了比较,包括对所有图的精确调查、蒙特卡罗方法、迭代随机颜色匹配方法以及Bollobás先前的研究中提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信