Muhammad Arif Asghar , Bing Wan , Lu Li , Jie Zhang , Shixin Tang , Hang Han , Yuanyuan Yang , Long Chu , Qian Zhang , Xiao Zhang , Qinjian Zhao
{"title":"Micronutrient antioxidant supplementation alleviates valproic acid-induced oxidative stress and male infertility via the NRF2/HO-1 pathway","authors":"Muhammad Arif Asghar , Bing Wan , Lu Li , Jie Zhang , Shixin Tang , Hang Han , Yuanyuan Yang , Long Chu , Qian Zhang , Xiao Zhang , Qinjian Zhao","doi":"10.1016/j.redox.2025.103685","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Valproic Acid (VPA), a widely used anticonvulsant, is known to induce oxidative stress, contributing to male infertility. This study explores the potential of micronutrient antioxidants to improve fertility in VPA-treated individuals.</div></div><div><h3>Methods</h3><div>Six-week-old male mice were treated with VPA and supplemented with antioxidants, including <span>l</span>-Arginine (120 mg/kg), N-Acetylcysteine (NAC) (2 mg/kg), Taurine (200 mg/kg), L-Tryptophan (0.5 mg/kg), Zinc chloride (ZnCl2) (1.5 mg/kg), and Selenium (0.5 mg/kg). The dosing regimen lasted for 34 days. Sperm quality, oxidative stress, and inflammatory biomarkers were assessed through gene expression analysis, western blotting, histological assessments, TUNEL assays, and immunohistochemistry. Additionally, GC-2spd(ts) and HepG2 cell lines were used to examine the testicular and systemic effects of VPA and antioxidants. Network pharmacology was applied to identify key molecular targets and pathways.</div></div><div><h3>Results</h3><div>Antioxidant supplementation significantly improved sperm count, with <span>l</span>-Arginine showing an approximately 296.1 % increase, NAC a 270.7 % increase, and Taurine a 255.9 % increase compared to the VPA-only group. Furthermore, antioxidants enhanced semen volume, testosterone levels, sperm motility, morphology, and viability. Gene expression analysis revealed significant upregulation of key oxidative stress-related proteins such as SOD1, HO-1, NRF2, and NQO1. Western blot and histological analyses showed a reversal of oxidative stress and preservation of seminiferous tubule integrity. TUNEL assays demonstrated a reduction in apoptotic damage, and IHC confirmed an increase in HO-1 and SOD1. In vitro studies with GC-2spd(ts) and HepG2 cells confirmed that antioxidants alleviated VPA-induced oxidative stress. Network pharmacology identified key molecular targets, such as GPX4, SOD1, HO-1, and NRF2, which are involved in oxidative stress, apoptosis, and inflammation pathways, that were modulated by antioxidants.</div></div><div><h3>Conclusion</h3><div>Micronutrient antioxidants effectively reduce VPA-induced oxidative stress and improve male fertility. These results suggest that antioxidant supplementation could be a promising strategy to mitigate oxidative damage and enhance fertility in individuals undergoing VPA therapy.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"85 ","pages":"Article 103685"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725001983","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Valproic Acid (VPA), a widely used anticonvulsant, is known to induce oxidative stress, contributing to male infertility. This study explores the potential of micronutrient antioxidants to improve fertility in VPA-treated individuals.
Methods
Six-week-old male mice were treated with VPA and supplemented with antioxidants, including l-Arginine (120 mg/kg), N-Acetylcysteine (NAC) (2 mg/kg), Taurine (200 mg/kg), L-Tryptophan (0.5 mg/kg), Zinc chloride (ZnCl2) (1.5 mg/kg), and Selenium (0.5 mg/kg). The dosing regimen lasted for 34 days. Sperm quality, oxidative stress, and inflammatory biomarkers were assessed through gene expression analysis, western blotting, histological assessments, TUNEL assays, and immunohistochemistry. Additionally, GC-2spd(ts) and HepG2 cell lines were used to examine the testicular and systemic effects of VPA and antioxidants. Network pharmacology was applied to identify key molecular targets and pathways.
Results
Antioxidant supplementation significantly improved sperm count, with l-Arginine showing an approximately 296.1 % increase, NAC a 270.7 % increase, and Taurine a 255.9 % increase compared to the VPA-only group. Furthermore, antioxidants enhanced semen volume, testosterone levels, sperm motility, morphology, and viability. Gene expression analysis revealed significant upregulation of key oxidative stress-related proteins such as SOD1, HO-1, NRF2, and NQO1. Western blot and histological analyses showed a reversal of oxidative stress and preservation of seminiferous tubule integrity. TUNEL assays demonstrated a reduction in apoptotic damage, and IHC confirmed an increase in HO-1 and SOD1. In vitro studies with GC-2spd(ts) and HepG2 cells confirmed that antioxidants alleviated VPA-induced oxidative stress. Network pharmacology identified key molecular targets, such as GPX4, SOD1, HO-1, and NRF2, which are involved in oxidative stress, apoptosis, and inflammation pathways, that were modulated by antioxidants.
Conclusion
Micronutrient antioxidants effectively reduce VPA-induced oxidative stress and improve male fertility. These results suggest that antioxidant supplementation could be a promising strategy to mitigate oxidative damage and enhance fertility in individuals undergoing VPA therapy.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.