{"title":"On degeneracy in the P-matroid oriented matroid complementarity problem","authors":"Michaela Borzechowski , Simon Weber","doi":"10.1016/j.disopt.2025.100891","DOIUrl":null,"url":null,"abstract":"<div><div>Klaus showed that the <span>Oriented Matroid Complementarity Problem</span> (<span>OMCP</span>) can be solved by a reduction to the problem of sink-finding in a <em>unique sink orientation (USO)</em> if the input is promised to be given by a <em>non-degenerate</em> extension of a <em>P-matroid</em>. In this paper, we investigate the effect of degeneracy on this reduction. On the one hand, this understanding of degeneracies allows us to prove a linear lower bound on the number of vertex evaluations required for sink-finding in <em>P-matroid USOs</em>, the set of USOs obtainable through Klaus’ reduction. On the other hand, it allows us to adjust Klaus’ reduction to also work with degenerate instances. Furthermore, we introduce a total search version of the <span>P-Matroid Oriented Matroid Complementarity Problem</span> (<span>P-OMCP</span>). Given <em>any</em> extension of <em>any</em> oriented matroid <span><math><mi>M</mi></math></span>, by reduction to a total search version of USO sink-finding we can either solve the <span>OMCP</span>, or provide a polynomial-time verifiable certificate that <span><math><mi>M</mi></math></span> is <em>not</em> a P-matroid. This places the total search version of the <span>P-OMCP</span> in the complexity class <span>Unique End of Potential Line</span> (<span>UEOPL</span>).</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"57 ","pages":"Article 100891"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528625000143","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Klaus showed that the Oriented Matroid Complementarity Problem (OMCP) can be solved by a reduction to the problem of sink-finding in a unique sink orientation (USO) if the input is promised to be given by a non-degenerate extension of a P-matroid. In this paper, we investigate the effect of degeneracy on this reduction. On the one hand, this understanding of degeneracies allows us to prove a linear lower bound on the number of vertex evaluations required for sink-finding in P-matroid USOs, the set of USOs obtainable through Klaus’ reduction. On the other hand, it allows us to adjust Klaus’ reduction to also work with degenerate instances. Furthermore, we introduce a total search version of the P-Matroid Oriented Matroid Complementarity Problem (P-OMCP). Given any extension of any oriented matroid , by reduction to a total search version of USO sink-finding we can either solve the OMCP, or provide a polynomial-time verifiable certificate that is not a P-matroid. This places the total search version of the P-OMCP in the complexity class Unique End of Potential Line (UEOPL).
期刊介绍:
Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.